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structural and phyletic implication. In

THE ENAMEL ULTRASTRUCTURE IN GIGANTOPITHE-
CUS BLACKI FROM GUANGXI, CHINA

Zhao Zikui Zhang Wending

(Institute of Vertebrate Palecontology and Palecoanthropology, Academia Sinica)
Key words Enamel; Prism pattern; Gigantopithecus blacki

Summary

Whether Gigantopithecus is a pongid or a hominid has been a problem of much
debate to palecanthropologists. The approach to this group, however, is almost com-
pletely based on the morphological and odontometric analyses of the enamel crown.

Recently analysis of the enamel prism pattern in a number of Neogene homino-
ids documented that distinct differences between the variants of Pattern III prism do
exist and seem to be used as a taxonomic indicator (Gantt, 1982, 1983). However,
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because of inadequate sampling and poorly understood processes at the ultrastructural
level, the value of such studies has to gain universal acceptability for determining
relationship in a consistent and systematic manner. There is obviously considerable
potential interest in the study of enamel prism patterns and enamel microstructure
in fossil hominoids. This paper is to put stress on the enamel ultrastructure of Giga-
ntopithecus blacki from Guangxi. And for comparison, the material of Homo sapiens
is also included.

To understand the differences in prism shapes the specimens were serially sectio-
ned or polished in a stepwise fashion to remove enamel about 10 to 20um thick each
time, and were etched in 0.1 M solution of H,PO, for 30—40 seconds. Then, the
specimens were washed and air-dried, and coated with approximately 300 A gold by
vacuum evaporation. Finally, the specimens were examined with SEM (JSM-T200)
operated at 15kV beam voltage.

Boyde has defined at least three basic patterns of enamel prism shape and seve-
ral variations on each pattern in mammals, and documented that the enamel prism
patterns are an important character in assessing taxonomic affinities. According to
Gantt, however, of important to our consideration of Neogene hominoid evolution is
the analysis of the variants of Pattern IIl prisms, especially in Pattern Illa and Pat-
tern IlIb. Following the definitions of Boyde and Gantt, Pattern Illa prism is a half
circle “head” with a tail. The tail portion of each prism is very narrow (Fig. 1).
Therefore, these prisms have also been referred to as “tadpole-shape” by Shellis and
Poole (1979). Pattern HIb, or the keyhole-shaped prism proposed by Meckel et al.
(1965a, b), is more than half a circle “head” with a wide tail portion, like fish-ta-
il (Fig. 2). These form a basis for our study of the variations of Pattern III prisms
in Gigantopithecus and Homo. The results are described below.

Gigantopithecus blacki
1. Occlusal plane

To ensure that the same relative orientation for each tracing of the polishing
planes is maintained, the facets of specific size and depth on cusp, such as protocone,
are cut or polished perpendicularly to long axis of the tooth.

In the outer surface layer of the enamel, the cross-section of the enamel prisms
is circular or sub-circular and arranged in Pattern I of Boyde’s classification (Plate
II, 2). The average diameter of the prisms is 6 gm. The thickness of the outer su-
rface layer consisting of Pattern I prisms is estimated 50-60um and over.

If the same preparation is re-ground to sample enamel at a greater depth within
the tooth, it is found that the prism cross-section is predominantly Pattern Illa (Pla-
te I, 2,3 and 4), although there are some areas of Pattern II. At the center area of
the cusp the prism cross section as Pattern I organization can also be found.

The cross-sectional appearance of these Pattern Illa prisms has been compared to
the outline of a tadpole-shape by Shellis and Poole (1979), with a half round head
and a slender tail (Plate 1, 2 and 3). The tails of one row of prisms fit between
the heads of the next row. The heads of the enamel prism are orientated towards
the center area of the cusp, while the tails direct cervically.
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2. Buccal or lingual plane

The outer surface layer of enamel consists of Pattern I prisms (Plate 11, 1) which
is similar to those obtained in the outer surface layer of occlusal mentioned abo-
ve. Near the enamel surface a variety of strange prism cross sections can be found,
some shaped like arcs or helixes, and some “prisms within prisms”. At a greater
depth within the tooth, however, it reveals the prism cross section as Pattern Illa or-
ganization. The head of each prism is orientated towards the occlusal, and the nar-
row tail orients cervically.

3. Longitudinal section in the medio-distal or bucco-lingual direction

Hunter-Schreger bands, about 10-18 prisms wide, are clearly visible (Plate II, 3),
especially at the cervical sides, and occupied the inner half to two thirds of the ena-
mel.

Homo sapiens

The preparations of facet of specific size and depth within the tooth is the same
as those of Gigantopithecus mentioned above. Pattern 1 organization occurs in the
outer surface, generally forming a thin layer in less than 10um thick. Occasionally,
it is completely absent, with Pattern III prisms reaching the surface. At a greater
depth within the tooth the prism cross-section is predominantly Pattern Illa and IIIb
organizations (Plate III, 1,2 and 3) although zone of Pattern I may be found at the
center area of the cusp. There are some small areas of Pattern II (Plate III, 4).

According to our examination, the Pattern IIIb prisms vary in the prism cross-se-
ctional shape (Plate III, 1 and 2). Longitudinal sections confirm that Hunter-Schre-
ger bands are very clear, especially near the enamel-dentine junction.

The use of the scanning electron microscope to study enamel has some limitati-
on, as only minute areas of enamel can be studied at a time. Another problem met
in the study of enamel microstructure is that the course of each prism towards the
surface is not direct but sinuous. Such prisms can be sectioned at different angles to
their long axis at any plane within the tooth, making an assessment and description
of true cross-sectional shape of prisms extremely difficult. Of great importance, the-
refore, is the normal way in preparing mature teeth for SEM. Boyde and Martine
(1982) have proposed six preparative techniques for studying mature enamel histolo-
gy in order to describe and evaluate their destructiveness and their ability to provi-
de useful information. Based on these results, Gantt (1983) suggested the following
procedures:

1. A facet is placed on the mediolateral portion of the crown

2. The facet is etched with a 0.5% H,PO, solution.

3. Stereoanalysis is used to evaluate prism patterns.

4. The prism patterns are related to the developmental patterns described by
Boyde.

However, our preliminary study indicated that for the correct evaluation of
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prism patterns it is appropriate to limit the polishing facet of analysis to the occlusal
plane of the enamel crown, instead of the mediolateral crown proposed by Gantt
(1983). It is in this area of the enamel crown that the prisms are also roughly pe-
rpendicular to the enamel surface, and that different patterns of the |prisms can be
found.

Gantt (1982, 1983) has presented a major review of the enamel prism patterns
and microstructure of Neogene hominoids. However, he did not provide any photo-
graphs of enamel ultrastructure and any discriptions for Giganitopithecus although its
Pattern Illa prism has been mentioned.

The data obtained in this study clearly indicated that there are obvious differe-
nces in the enamel prism patterns between Gigantopithecus and Homo. In Gigantopi-
thecus, the outer surface enamel appeared as a layer, over 50 to 60 um thick, made
up of Pattern I prisms, and in the body of the enamel the prisms mainly have a
Pattern Illa morphology, although there are some areas of Pattern I and Pattern II.
On the contrary, enamel prism patterns in Homos reveal predominantly two patterns,
Illa and IIIb, although Pattern I and Pattern II may also be found in some localized
areas. According to Boyde and Gantt, a functional difference exists between the vari-
ants of Pattern III, e.g. Illa and IlIb. It is reasonable to believe, therefore, that the
complexity in the prism patterns of Homo could be consequent on a wide variety of
stresses by the multidirectional movements of the mandible, and that the microstru-
cture differences in the mature enamel between Gigantopithecus and Homo are of
taxonomic significance in hominoids. At present, however, the available information
has not been fully systematized and much more information is required.
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HEiRi{88 (Explanations of Plates)
EiR 1 (Plate I)

LPRERTHAERAETR(FRLENT, BdBRMEERINSEFLFLREROHERN,. HMAHS: ETG
3003,
Polished occlusal plane of a cusp (lower protocone) in a lower molar of Gigantopithecus blacki,
showing the prisms tend to be maintained 1n rows arranged circumferentially around the center
area of the cusp. Micrograph No. ETG 3003.
2 pREHR s DHHEYE(FEE. BAHES: ETG 3118,
Pattern Illa prisms seen in the lower molar of Gigantopithecus blacki. Micrograph No. ETG 3118,
3. EE 2 mfEHR, B HES: ETG 3119,
An enlargement of Fig. 2. Micrograph No. ETG 3119.
4 PEERERE Il BME=SEE,HA=7° BEHS: ETG 3123,
The three-dimensional structure of Pattern IIla prisms seen in the upper molar of Gigantopithecus
blacki, tilt angle difference = 79, Micrograph No. ETG 3123.

@i 11 (Plate II)
LyRER I R EEm( LAGENEXR), BAFRS: ETG 0209,

Pattern I prisms seen from the polished lingual plane of a upper molar in Gigantopithecus blacki,
Micrograph No. ETG 0209.
2LHRER I AR Z44R(TREREREMRD.HA=5" Bh®ws: ETG 3121,

The three-dimensional structure of Pattern I prisms seen from the enamel surface of occlusal view

in a lower molar of Gigantopizhecus blacki, tilt angle difference = 5°. Micrograph No. ETG 3121,
3. SRERTAGMBEAYE,. BAHS: ETG 0223,

Part of a longitudinal section through enamel of a lower lomar in Gigantopithecus blacki, showi-

ng prisms arranged in Hunter-Schreger bands., Micrograph No. ETG 0223,
4. PERERMEADE(TEZSA%). BAF%S5S: ETG 0221,

Part of alongitudinal section of enamel prisms through a lower second premolar of Giganzopothe-
cus blacki, showing cross-striations occurred at 4.5 to 5.5um intervals along cach prism. Microg-
raph No. ETG 0221.

B 1 (Plate III)

LIRA 1Ib Bk, MA4%S: ETH 3108,
Pattern IIIb prisms of Homo sapiens. Micrograph No. ETH 3108,

2. A IIIb BfhkE, A &S ETH 0731,
Pattern IIIb prisms of Homo sapiens. Micrograph No. ETH 0731,

S.URA Ils WA, MAHS: ETH 3103,
Pattern 1lla prisms of Homo sapiens. Micrograph No. ETH 3103.

4 BRA 1T hit. BA&S: ETH 0381,
Pattern II prisms of Homo sapiens. Micrograph No. ETH 0381.
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