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A B S T R A C T

Evolution of the definitive mammalian middle ear (DMME) as a textbook example in vertebrate evolution has
been extensively studied during the last 200 years. Fossils provide the direct evidence on evolutionary stages of
the DMME, but because of delicacy of the miniscule ossicles, unequivocal evidence about them has always been
rare. Recent work on a stem therian mammal (124 million years old) shows presence of the surangular bone in
the basal mammals as a primitive feature and potentially retained in the embryonic stage of some extant
mammals. The work also proposed that the DMME and mammalian jaw evolved in a modular fashion. It started
as a highly integrated complex in structures and functions, the two modules were regulated by similar devel-
opmental genetic mechanisms and eventually decoupled under natural selection so that the physical constraint
the two modules imposed on each other was removed, allowing future improvement of each module for better
function.

Non-mammalian reptiles (NMRs) have one bone, the columella
auris (stapes), in the middle ear, but mammals have three: the stapes,
incus, and malleus, which form a lever system that receives sound vi-
brations at the tympanic membrane and transmits them to the inner ear
(Fig. 1A-B). The lower jaw of NMRs consists of several bones in which
the articular bone articulates the skull bone, the quadrate, to form the
primary jaw joint, contrasting the single-boned lower jaw (dentary)
that articulates the squamosal, as the secondary jaw joint, in mammals
(Fig. 1B). Since Darwin’s time it had become known that the reptilian
articular, prearticular, angular, and quadrate were homologous to the
malleus, gonial, ectotympanic, and incus of mammals, respectively, a
view recognized as the Reichert-Gaupp theory (Maier and Ruf, 2016).
Incorporation of the ectotympanic and the malleus-incus complex into
the middle ear as exclusive hearing structures are the most critical
events in the evolution of DMME and jaw joint (Allin, 1975; Allin and
Hopson, 1992 ; Fleischer, 2013).

Fossils show that the postdentary bones (articular, prearticular,
angular, surangular) and the quadrate of NMRs gradually reduced size
during the evolution of synapsids toward mammals. In basal mamma-
liaforms, the reduced postdentary bones served for dual functions:

chewing (mastication) and hearing (sound transfer from outer to inner
ear). In the transitional mammalian middle ear (TMME) of some
Mesozoic mammals (Meng et al., 2011; Fig. 1C), the postdentary bones
had detached from the dentary and functioned exclusively for hearing,
while the secondary jaw joint was in full function. However, because
the auditory bones were connected to the ossified Meckel’s cartilage
(OMC) that was anteriorly lodged in the medial side of the dentary bone
in TMME, hearing and chewing must still have interfered with each
other.

We recently characterized a novel stem therian mammal, Origolestes
lii, from the Early Cretaceous Jehol Biota, China, which shed new light
on the evolution of the DMME (Mao et al., 2020; Fig. 1D). High-re-
solution CT-scan revealed 3D morphologies of the auditory bones and
OMC that were preserved in nearly anatomical positions. Of the audi-
tory bones, the surangular bone was identified; this was a prominent
postdentary bone in basal mammaliaforms but disappeared in extant
mammals. Although the accessory malleus, present in embryonic stage
of some mammals, was thought to be homologous to the surangular
(McClain, 1939), there seems no convincing evidence for it. With the
discovery of Origolestes and other evidence, we postulated that the
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surangular had persisted in basal mammals as a primitive feature and
probably exists as a remnant in embryonic stage of some extant mam-
mals, a hypothesis that invites tests from paleontological and devel-
opmental studies. More importantly, the specimens of Origolestes pre-
served a critical configuration that shows separation of the hearing and
chewing apparatuses. Compared to the TMME, the auditory bones had
lost the bony connection with the OMC; a gap between the two units
was likely connected by soft tissue, such as a ligament, in life (Fig. 1D).
This phenotype probably marked the beginning stage of the DMME.
Developmental genetic studies have shown that the reptilian jaw joint
and the malleus-incus complex were regulated by similar genetic me-
chanisms and that the gene-controlled process is responsible for the
developmental breakdown of the Meckel’s cartilage in embryonic stage
of mammals (Tucker et al., 2004; Anthwal et al., 2017; Urban et al.,
2017). With the discovery of auditory bones and OMC in Origolestes, it
becomes more evident that the embryonic developments of the mam-
malian middle ear and jaw recapitulate their evolutionary stages.

Evidence shows that the hearing and chewing elements have been
phenotypically and genetically constrained as two modules during the
evolution of synapsids; Origolestes visualized the snapshot of the evo-
lutionary decoupling moment of the two modules (Fig. 1E). Modular
evolution in biology, such as vertebrate limbs (Shubin and Davis, 2004)
and mammal skulls (Koyabu et al., 2014) has been commonly dis-
cussed. However, the modularity of the DMME and mammalian jaw is

intriguing, perhaps unique, in that they started as a highly integrated
complex with mixed hearing and chewing functions in basal mamma-
liaforms. The stapes, for instance, is generally considered as a hearing
bone but contributed to chewing, whereas the articular, a jawbone for
chewing, participated hearing for transmitting sound vibrations. How-
ever complex, the phenotype and underlying genotype for each module
must have been coupled and the natural selection has been working on
both modules until their decoupling during the evolution of mammals.
The decoupled modules removed the physical constraints they imposed
on each other, allowing each module to evolve without bothering the
other. Many questions can be asked in light of this new study. Did a
similar process take place in other lineages, such as monotremes and
multituberculates? The Meckel’s cartilage arises from the first phar-
yngeal arch and the phenotypic boundary between the two modules is
within it; then, how did the genetic mechanisms responsible for the two
parts of the cartilage work during the evolutionary development in
jawed vertebrates? Mammals, particularly therians, can hear high-fre-
quent sounds and possess enormous tooth morphologies for processing
diverse foods; could this biodiversity be partly attributable to the
modular decoupling, as we see in Origolestes?
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Fig. 1. A, Comparison of the middle ears of non-mammalian reptiles (left) and mammals (right) (modified from Romer and Parsons, 1977). B, Comparison of the
single-boned mammalian lower jaw (Didelphis) and the multi-boned reptilian jaw (Varanus). C, TMME in which the auditory bones were still connected to the OMC
(Liaoconodon). D, Decoupling phenotype in which the bony contact between the auditory bones and OMC disappeared (Origolestes). E, Outlined stages of the modular
decoupling process during evolution of synapids toward mammals.
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