元谋古猿牙齿釉质微观结构研究^{*}

赵凌霞**

(中国科学院古脊椎动物与古人类研究所,北京 100044)

郑良高峰 姜础 (云南省文物考古研究所,昆明 650118) (元谋人陈列馆,元谋 651300)

摘要 运用扫描电子显微镜,对元谋古猿牙齿釉质微观结构进行了初步研究.观察 了牙齿釉质生长线结构及其密度变化和生长周期,推算出元谋古猿下颌门齿的牙冠形 成时间,同时对牙齿釉质的三维结构进行了初步观察分析.将元谋古猿的牙齿生长发 育情况和釉质微观结构特征与禄丰古猿做了比较,发现二者之间有相似性,同时存在 一定差异,分析讨论了它与早期人类起源的相关性问题.

关键词 早期人类起源 元谋古猿 牙齿釉质微观结构 生长发育

我国云南发现的新第三纪古猿化石、在探讨早期人类起源的时间、地点及系统演化等重大 学术问题上具有十分重要的意义,一直为国际学术界所关注.元谋古猿化石产地是继开远小 龙潭、禄丰石灰坝之后,在我国云南发现的又一重要的新第三纪古猿化石地点.自 1986 年以 来,先后在元谋小河和雷老地区发现了大量的古猿牙齿化石,对其综合研究必将为确定元谋 古猿的性质及其系统位置,乃至早期人类起源问题的解决提供有力的依据.近年来,随着生命 科学技术的快速发展,新的方法和手段的不断创新,给传统的古生物学研究提供了新的生机. 运用扫描电子显微镜,研究古生物化石材料的微观结构,是古生物学及古人类学研究的一个 新的学科生长点,为科学地揭示远古生命奥秘提供了新的途径.继禄丰古猿牙齿釉质的微观 结构研究^[1,2],笔者在此进一步探讨元谋古猿牙齿釉质微观结构及其生长发育、系统演化问题.

1 研究材料和方法

选取牙冠保存完整、牙切缘没有或轻微磨耗的 4 枚元谋古猿下颌门齿(恒齿),用于观察牙 冠釉面横纹及生长发育的研究.另外选用了一枚元谋古猿下中门齿 YV2013(恒齿),用于组织 切片,观察釉面横纹的生长周期及釉质的三维结构.标本编号见表 1,其中"L"编号的标本来 自元谋人陈列馆,"YV"编号的标本来自云南省文物考古研究所.

用加有洗涤剂的温水超声清洗牙齿,以消除牙冠表面脏物;环氧树脂包埋标本以备组织 切片;唇-舌方向将标本切成两块(分别用于釉质横切面和纵切面观察);磨平、抛光观察面,并 清洗干净;将标本放入 0.1 mol/L 的磷酸溶液酸蚀 50 s;放入 80℃的烘箱烘干;最后将样品置于真

²⁰⁰²⁻⁰¹⁻²⁸ 收稿

^{*} 国家"九五"攀登专项(批准号: 95-专-01)、国家自然科学基金(批准号: 40002003)和中国科学院古生物特别支持费(批 准号: 970402)资助

^{**} E-mail: zhaolx@mx.cei.gov.cn

表 1	兀谋古猿卜颌门齿骨	究 标 本
标本编号	牙齿鉴定	化石产地
L013	左下 I ₂	雷老
L014	左下 I	雷老
YV1919	左下 I	小河
YV1753	右下 I ₂	小河
YV2013	左下 I	小河

 空镀膜机内,在选定的观察面上喷镀约
30 nm的金膜,便可在扫描电子显微镜下 进行观察.使用的扫描电子显微镜是 JSM-1600,加速电压为 12 kV.

观察研究的内容包括两个方面:(1) 牙齿釉质形成过程中遗留下来的生长发

育结构,即釉面横纹(Perikymata)、芮氏生长线(striae of Retzius)、釉柱横纹(cross striations); (2) 牙齿釉质釉柱的三维结构,即釉柱横切面形态及排列模式(enamel prism pattern)、釉质纵切面 釉柱丛的施氏明暗带(Hunter-Schreger bands)结构.

2 观察结果

2.1 釉面横纹观察

牙釉质的生长是由牙尖向牙颈方向呈叠瓦状一层一层堆积形成,在牙齿釉质表面形成平 行排列的釉面横纹,在釉质内部则表现为芮氏生长线,生长线所在的位置是釉质钙化较弱的 部分,正常情况下在显微镜下很容易观察到釉质生长线结构.值得一提的是,有些个体在釉质 形成过程中,由于营养不良或疾病的原因而影响釉质的形成和钙化,有时也会在牙齿表面形 成一条或数条釉质发育不全的条带(Liner Enamel Hypoplasia),它与正常的釉面横纹不同,肉 眼即可识别出来,表现在其条带数目少,相对较粗,发生的部位也不规律,明显区别于分布于 整个唇舌面的细而密集的釉面横纹.

5 枚元谋古猿门齿的唇侧面均可观察到明晰的釉面横纹,且釉面横纹的密度由牙尖向牙颈方向,逐渐增大(图 1). 若将整个牙冠平均分成三部分,靠近牙尖部,釉面横纹间距最大,密度最小,平均小于 10 条/mm;牙冠中部的釉面横纹密度逐渐增大,10~20 条/mm;靠近牙颈部密度最大,约 20~30 条/mm. 这一现象反映了牙冠形成过程中,牙冠的延伸生长速率逐渐减小,靠近牙颈处的生长速率显著小于牙尖部.

图 1 元谋古猿牙齿釉面横纹 照片示 YV2013 门齿釉质表面(唇侧面中部),右下角箭头指向牙颈方向

2.2 釉面横纹的生长周期

在釉质形成过程中,由于泌釉细胞分泌活动的节律性变化(其生理机制不清),使牙齿釉质 出现规律性的生长纹:釉面横纹、芮氏线、釉柱横纹.根据对现生大猿幼年个体牙齿釉质形成 过程中的同位素荧光标记活体实验,发现釉面横纹和芮氏线的生长周期为 6~11 天,平均 7~9 天;而釉柱横纹的生长周期为 1 天.不同个体的釉面横纹和芮氏线的生长周期可能存在差异; 对同一个体来说,所有牙齿的釉面横纹和芮氏线的生长周期是一致的,两条相邻的芮氏线之 间釉柱的釉柱横纹数即代表釉面横纹和芮氏线的形成天数,即生长周期^[3].

在元谋古猿 YV2013 门齿的唇-舌径纵切面上(图 2),可观察到釉质纵切面的外表层有明显 的平行排列的芮氏线以及单根釉柱上的釉柱横纹,芮氏线伸出到釉质表面即为釉面横纹. YV2013 门齿的相邻芮氏线之间釉柱的生长纹有 9 条,这意味着该古猿个体的芮氏线或釉面横 纹的生长周期为 9 天,它位于现代大猿和现代人的变异范围.

图 2 元谋古猿牙齿釉质生长线 照片示 YV2013 门齿釉质纵切面(唇侧). (a) 芮氏线, (b) 釉面横纹, (c) 釉柱横纹

2.3 牙冠生长形成时间估算

牙冠的形成是自牙尖开始逐渐向牙颈方向延伸,通过观察计数整个齿冠的芮氏线或釉面 横纹及其生长周期,可以较准确地推算牙冠形成所需的时间^[3].计算公式如下:

牙冠形成时间(年) = 芮氏线总数×生长周期(天)/365,

牙冠形成时间(年) = 釉面横纹总数×生长周期(天)/365 + 牙尖部形成时间.

在不破坏化石标本的情况下,在牙齿表面不能观察到内部的芮氏线,只能观察到牙齿唇 舌面的釉面横纹;而牙尖部的釉质表面没有釉面横纹,这是因为牙尖部的芮氏线由于呈同心 圆排列,层层包裹,不能伸展到釉质表面而形成釉面横纹,因而牙尖部的形成时间不易准确推 算,只能采取估计的方法.但就门齿而言,其牙尖部釉质厚度不大,它在整个齿冠中所占的比 例很小,不像后面的前臼齿和臼齿的牙尖部在齿冠中占的比例较大,所以选取适当的牙尖部 形成时间估计值,对推算整个门齿齿冠形成时间不会产生大的误差.由于人猿超科成员下颌 门齿的釉质厚度接近,不像后部的前臼齿、臼齿釉质厚度变异很大,因此可以参照现代人下颌 门齿牙尖部形成时间(约6个月)来估算化石类人猿牙尖部的形成时间^[4]. 元谋古猿 4 枚门齿的釉面横纹总数与牙冠形成时间的估计见表 2. 根据元谋古猿 YV2013
标本及现代类人猿的釉面横纹生长周期的观察结果,在计算牙冠形成时间时,分别假定元谋
古猿牙齿的釉面横纹生长周期为 7 或 9 天,而牙尖部形成的时间均假定为 6 个月.

	j	牙冠测量/mm		動声推位数	牙冠形成时间/a	
	高	K	宽	相則傾以奴 -	7 天周期	9 天周期
L013	14.1	5.8	7.6	191	4.2	5.2
L014	11.6	4.6	6.3	163	3.6	4.5
YV1919	11.5	5.2	6.8	182	4.0	5.0
YV1753	12.6	5.0	7.4	165	3.7	4.6
平均值	12.3	5.2	7.0	175	3.9	4.8

表 2 元谋古猿下颌门齿的牙冠形成时间估算

2.4 釉质釉柱横切面形态

釉柱是构成釉质的基本结构单位. 根据 Boyde¹⁾对未成熟和成熟釉质超微结构的研究,现 生哺乳动物牙齿釉柱横切面形态及排列模式可分为1型,2型和3型,其中3型釉柱又进一步 分为3A,3B和3C.每个动物类群的釉质主要由某种特定形态的釉柱组成,因而釉柱的横切面 形态在动物分类学上具有重要意义.我们观察了元谋古猿一枚门齿 YV2013 的釉柱横切面形 态.观察部位为牙冠唇侧面中央部分的表层釉质,釉柱排列较规则,釉柱的长轴方向基本上与 表面垂直,即垂直于唇侧面而平行于咬合面.釉柱横切面形态(图3)主要显示为3型釉柱的排 列方式,每个釉柱横切面的边界没有完全封闭,相邻釉柱之间明显呈横向排列,每个釉柱"柱 头"(宽的部分)朝向牙齿咬合面,"尾部"(窄的部分)指向牙颈.根据 Boyde 对3型釉柱3种 形态的分类定义,初步观察元谋古猿 YV2013 牙齿釉质多表现为3B型釉柱,即柱头大于半圆 形,尾部较宽.它区别于3A型(釉柱头呈半圆形,尾部纤细),也不同于3C型(前后两排釉柱之 间,间距较大).另外,元谋古猿 YV2013 牙齿也有少量的2型釉柱的排列方式,即相邻釉柱之 间呈明显的纵向排列,柱头也指向咬合面,但相对于3型釉柱,2型釉柱所占的比例很小.

图 3 元谋古猿釉柱横切面形态 照片示 YV2013 门齿表层釉质磨光面(唇侧面中部). (a) 釉柱 "柱头", (b) 釉柱 "尾部". 右上角箭头指向牙尖方向

¹⁾ Boyde A. The structure and development of mammalian eamel. Ph. D. Dissertation, University of London. 1964

2.5 釉质纵切面

由元谋古猿下中门齿 YV2013 的唇-舌径纵切面可见(图 4), 整个釉质纵切面具有明显的施 氏明暗带, 明暗带由牙齿釉质齿质交界面(EDJ)垂直伸向釉质外表面, 几乎贯穿整个釉质纵切 面, 只是在釉质外表层(不超过整个釉质厚度的 10%)不明显. 每条明带或暗带大约由 9~12 根 釉柱组成. 施氏明暗带的形成是由于釉柱丛的排列走向不同, 在显微镜下呈明暗相间的条带.

图 4 元谋古猿釉质纵切面 照片示 YV2013 门齿釉质纵切面(唇侧). (a) 釉质齿质交界面, (b) 釉质外表面, (c) 施氏明暗带

3 讨论

3.1 元谋古猿牙齿的生长发育分析

根据元谋盆地含古猿化石地点的地层、哺乳动物化石分析^[5,6], 元谋古猿的时代距今大约 5~6 Ma, 稍晚于禄丰古猿的时代. 元谋与禄丰两地相距很近, 古猿牙齿的形态特征具有很大 相似性, 同时也有差异^[7]. 为了进一步了解元谋古猿与禄丰古猿的相互关系, 这里重点从下颌 门齿的生长发育角度作一比较.

釉面横纹是反映牙冠形成过程的很好记录,通过观察釉面横纹的总体分布,可以较准确 地了解牙冠形成的时间及速率变化. Bromage^[8]和 Beynon 等^[9]对南方古猿(Australopithecus)下 颌门齿釉面横纹的研究,发现南方古猿阿法种与粗壮种的牙齿发育存在明显不同:南方古猿 阿法种的牙冠形成时间显著长于粗壮种;并且在整个牙冠的形成过程中,齿冠向牙颈部延伸 生长速率表现方式也不同,南方古猿阿法种的生长速率向牙颈方向逐渐减慢,类似于现代人, 而粗壮种的生长速率比较快而相对恒定.这种生长发育模式的不同,从生长发育学的角度,进 一步说明了它们分属不同的分类单元.

元谋古猿下颌门齿唇侧面具有清晰的釉面横纹,釉面横纹的密度由牙尖向牙颈部显著增大,表明在牙冠形成过程中速率逐渐减慢.这一点与禄丰古猿相似^[1,2],也相似于南方古猿阿 法种及现代人的牙冠生长方式,但区别于南方古猿粗壮种和现生大猿,后者釉面横纹密度在 整个牙冠中变化不大,特别是在靠近牙颈部,釉面横纹间隔没有一个明显减小的趋势.

对元谋古猿下颌门齿 YV2013 的纵切面观察, 发现其釉面横纹的生长周期为9天. 笔者曾

观察了禄丰古猿一枚犬齿的釉质纵切面,发现其釉面横纹的生长周期也是9天^[2]. 二者的生长 周期均位于现生大猿和现代人的釉面横纹生长周期变化范围(6~11 天,平均7~9 天)之内,而新 旧大陆猴子、长臂猿的釉面横纹生长周期短,平均4~5 天;发现于非洲中新世早期的原康修尔 猿(*Proconsul*)牙齿釉面横纹的生长周期为5或6天^[10]. 由此可见,中新世晚期的元谋古猿和禄 丰古猿在牙齿发育上与早中新世的原康修尔猿明显有别,已经具有相似于现生大猿和人类的 牙齿釉质生长节律,可能反映了系统演化上的共近裔性.

从下颌门齿釉面横纹计数来看, 元谋古猿 4 枚牙齿唇侧面釉面横纹平均 175 条(163~191), 禄丰古猿下颌门齿(PA895)的釉面横纹为 128 条, 显著少于元谋古猿. 由于不同个体之间, 门 齿釉面横纹总条数会有差异, 而同一个体上下门齿差别不大, 故将禄丰古猿另外两枚上颌门 齿考虑在内, 禄丰古猿 3 枚门齿的釉面横纹平均 150 条, 仍然少于元谋古猿. 如果釉面横纹的 生长周期均按 7 天(或 9 天)计算, 元谋古猿门齿齿冠的形成时间平均 3.9 年(或 4.8 年), 而禄丰 古猿门齿齿冠形成时间平均为 3.4 年(或 4.2 年), 故元谋古猿门齿齿冠形成时间比禄丰古猿要 长. 另外, 根据牙齿齿冠高度的观察测量, 元谋古猿门齿整体上要稍小于禄丰古猿的门齿, 而其 生长形成时间却较禄丰古猿长, 说明元谋古猿的牙冠成长期偏长, 其生长速率小于禄丰古猿.

与中新世早期的原康修尔猿门齿牙冠形成时间(平均 2.0 年)^[11]比较,中新世晚期的元谋古 猿的该时间显著增长,相差1年以上.时代晚于元谋古猿的南方古猿阿法种平均牙冠形成时间 3.4 年(4 枚门齿),粗壮种 1.8 年(5 枚门齿),均短于元谋古猿.相比之下,元谋古猿门齿形成时 间与现代人和现生大猿更接近.这一点也反映了元谋古猿牙齿生长发育的近裔性特征.

与现生大猿比较,现代人具有显著不同的生长发育模式,其中一个显著的差别是人类幼儿的生长期延长,生长速率较慢.人类祖先最早在什么时候开始具有现代人的成长发育速率 和模式,是人类学家非常关注的问题.一些学者认为古人类的生长发育速度较现代人快,现代 人较长的生长期这一特征发生在人类演化的较晚时期,可能是直立人之后的进化事件^[11].牙 齿的生长发育,包括牙冠和牙根的形成、乳牙脱落、恒牙萌出及其磨耗,与机体的整个生命过 程息息相关.通过牙齿生长发育的研究,能够为探讨古人类及其祖先的生长发育问题提供非 常重要的信息.对元谋古猿和禄丰古猿门齿生长发育的研究笔者发现,在中新世晚期云南古 猿已具有较长的门齿生长期,接近现代人和现生大猿的生长期,它是否具有系统演化上的意 义有待于进一步证实.

3.2 元谋古猿牙齿釉质的三维结构及分类意义

从已发表的一些资料来看,在灵长类中,牙齿釉质的超微结构,特别是釉柱的形态有明显 的变异,具有分类学上的意义^[12].借助扫描电子显微镜技术,研究人猿超科成员的牙齿超微 结构,目前尚处于探索阶段.人猿超科中,釉质超微结构的分类学意义主要是对 3 型釉柱的形 态变异的分析,特别是对 3A 型和 3B 型的分析^[13,14].

元谋古猿釉柱横切面形态主要表现为3型排列方式,也有少量2型排列,与禄丰古猿的釉 柱形态相似,且均具有3B型釉柱.根据Gantt的观察^[13],在人猿超科中,现代人、直立人和南 方古猿的釉柱为3B型,而现生猿类和其他古猿为3A型,包括非洲的原康修而猿(*Proconsul*)、 亚洲的西瓦古猿(*Sivapithecus*)、巨猿(*Gigantopithecus*)和欧洲的奥兰诺古猿(*Ouranopithecus*)均 表现为3A型.赵资奎^[14]研究了中国广西的步氏巨猿釉柱形态,也发现步氏巨猿表现为3A型 釉柱,区别于现代人的3B型釉柱.关于釉柱形态变异在人猿超科中的分类意义,特别是3B型 釉柱是否为人科成员特有、目前还存在争议. 元谋古猿和禄丰古猿均出现 3B 型釉柱, 如果 3B 型釉柱是人科成员特有的一个衍生性特征, 提示元谋古猿和禄丰古猿可能与人科成员之间具 有亲缘关系、否则 3B 型釉柱在人猿超科上的分类学意义需要进一步检验.

元谋古猿釉质纵切面有明显的施氏明暗带,几乎贯穿整个纵切面.这一点与禄丰古猿、西 瓦古猿、长臂猿、现代人相似,而不同于现生大猿,后者釉质外表层(占整个釉质厚度 20%~40%) 没有施氏明暗带^[2,15].元谋古猿每条明暗带宽由 9~12 条釉柱组成,位于现代人的变异范围(由 6~12 条组成)之内,而步氏巨猿的明暗带较宽,由 10~18 条釉柱组成^[14].初步看来,元谋古猿 釉质纵切面形态与现代人有一定相似性,但由于缺乏其他古猿的对比资料,这一现象体现共 近祖性还是近裔性是一个值得探讨的问题.

综上所述、元谋古猿下颌门齿的微观结构与禄丰古猿有相似之处.也存在差异,元谋古猿 的门齿齿冠形成时间比禄丰古猿长(大约半年).元谋古猿牙齿的生长发育及微观结构特征在 某种程度上与人类具有相似性,而且有可能是共近裔特征、提示元谋古猿与早期人类起源可 能存在某种相关性.

致谢 研究工作中,得到邱占祥教授的悉心关怀和指导,电子显微镜室工作得到欧阳莲的大力协助,在此表示感谢.

参考文献

- 1 赵凌霞, 欧阳莲, 陆庆五, 禄丰古猿牙齿釉质生长线与个体发育问题研究. 人类学学报, 1999, 18(2): 102~108
- 2 Zhao L, Lu Q, Xu Q. Enamel microstructure of *Lufengpithecus lufengensis*. Acta Anthrop Sinica, 2000, 19(Supplement): 77-108
- 3 FitzGerald C M. Do enamel microstructures have regular time dependency? Conclusions from the literature and a large-scale study. J Hum Evol, 1998, 35: 371~386
- 4 Dean M C. Growth layers and incremental markings in hard tissues: A review of literature and some preliminary observations about enamel structure in Paranthropus. J Hum Evol, 1987, 16: 157~172
- 5 宗冠福, 潘悦容, 元谋盆地含古猿化石地层时代的初步划分, 人类学学报, 1991, 10(2): 155~166
- 6 宗冠福.元谋古猿动物群的初步对比及有关问题讨论.见:和志强主编.元谋古猿.昆明:云南科技出版社,1997. 122~131
- 7 郑 良、张兴永、古猿化石、见:和志强主编、元谋古猿、昆明:云南科技出版社、1997、21~58
- 8 Bromage T G. The biological and chronological maturation of early hominids. J Hum Evol. 1987, 16: 257~272
- 9 Beynon A D, Dean M C. Distinct dental development patterns in early fossil hominids. Nature, 1988, 335: 509~514
- 10 Beynon A D, Dean M C, Leakey M G, et al. Comparative dental development and microstructure of *Proconsul* teeth from Rusinga Island, Kenya. J Hum Evol, 1998, 35: 163~209
- 11 Smith B H. Dental development and the evolution of life history in Hominidae. Am J Phys Anthropol, 1991, 86: 157~174
- 12 Boyde A, Martin L. Enamel microstructure determination in hominoid and ceropithecoid primates. Anatomy and Embryol. 1982, 165: 193-212
- 13 Gantt D G. The enamel of Neogene hominoids—structural and phyletic implication. In: Ciochon R L, Corrucini R S, eds. New Interpretation of Ape and Human Ancestry. New York and London: Plenum Press, 1983. 249~298
- 14 赵资奎、张文定、巨猿牙齿釉质的超微结构、古脊椎动物学报, 1994, 32(2): 87~97
- 15 Martin L. Boyde A. Rates of enamel formation in relation to enamel thickness in hominoid primates. In: Fearhead R W, Suga S, eds. Tooth Enamel IV. Amsterdam: Elsevier Science Publishers B V. 1984. 447~451