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Highlights
The peopling of the Tibetan Plateau is a
spectacular example of human adapta-
tion to high altitudes as Tibetan popula-
tions have thrived for generations under
strong selective pressures of the hypoxic
environment.

Recent discoveries are leading to para-
digmatic changes in our understanding
of the population history of the Tibetan
Plateau, involving H. sapiens and the ar-
chaic hominin known as Denisovan.
Recent archaeological discoveries suggest that both archaic Denisovans and
Homo sapiens occupied the Tibetan Plateau earlier than expected. Genetic
studies show that a pulse of Denisovan introgression was involved in the
adaptation of Tibetan populations to high-altitude hypoxia. These findings
challenge the traditional view that the plateau was one of the last places on
earth colonized by H. sapiens and warrant a reappraisal of the population
history of this highland. Here, we integrate archaeological and genomic evi-
dence relevant to human dispersal, settlement, and adaptation in the region.
We propose two testable models to address the peopling of the plateau in the
broader context of H. sapiens dispersal and their encounters with Denisovans
in Asia.
Archaeological and genetic studies pro-
vide essential insights into behavioral
and biological human adaptations to
high elevations but there is a lack of
models integrating data from the two
fields. Here, we propose two testable
models for the peopling process on the
plateau leveraging evidence from ar-
chaeology and genetics.
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High-altitude settlement and selective pressures
Tibetans are the largest indigenous population living in high-altitude environments who have
developed a suite of traits to cope with the harsh environment of the Qinghai–Tibetan Plateau
(Tibetan Plateau, hereafter, TP) [1–3]. With an average elevation of 4000 m above sea level (masl), it
is surrounded by natural barriers with a cold and arid environment and significant seasonal variations
[4]. During the Late Pleistocene (see Glossary), the highly frequent millennial-scale oscillations of the
last glacial cycle are additional obstacles for human expansions to the high-altitude ecosystem
[5–7]. In addition, increased elevation causes a rapid reduction of oxygen concentration that leads
to a physiological stress known as hypoxia. Usually experienced at elevations above 2500 masl,
hypoxia results in severe and sometimes life-threatening symptoms, such as intrauterine growth
restriction during pregnancy and low birth weight, that cannot be alleviated solely by behavioral
adjustments and require physiological adaptation [2,8,9].

Yet, Tibetans have successfully settled in the TP for generations, but when, how, and by whom
the highlands were permanently inhabited are still a matter of debate. Existing models addressing
these questions aremostly based on archaeological evidence [10–12]. Archaeological studies are
informative on subsistence practices, behaviors, and human distributions, while they do not pro-
vide direct insight for the biological adaptation to hypoxia. By contrast, genomic studies have
identified several candidate adaptive genes in Tibetans [1,9,13], inferred the population split be-
tween Tibetans and lowland Chinese [14–17], and detected the Denisovan-like introgression
that facilitated the genetic adaptation of Tibetans [18,19]. Therefore, archaeological and genetic
studies are complementary to reconstruct the picture of the peopling process of the plateau.
However, studies with a comparable emphasis on the two fields are absent so far. In the light
of recent discoveries (such as Nwya Devu and Baishiya cave [20,21]), we evaluate relevant
archaeological, genomic, fossil, and paleoenvironmental evidence under one framework to
propose two parsimonious models and their predictions concerning the population history of
this plateau.
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The archaeology of human occupations and paleoclimates
Archaeological research on TP began in the 1960s but well-documented excavations and dated
sites are limited so far [10,11,22] (Figure 1). The available archaeological data suggest that there
were four major periods of human occupation on the TP.

Marine Isotope Stage 6–4
In the Marine Isotope Stage (MIS) 6, the Xiahe mandible (Baishiya Karst Cave) suggests that
archaic hominins reached the marginal plateau (3200 masl) around 160 thousand years ago (hereaf-
ter ka) [21]. The fossil specimen has archaic mandibular and dental features that differ from those of
Neanderthals, and the paleoproteomic analysis indicates a close affinity with ‘Denisovans’ [21,23]. In
addition, Denisovan mitochondrial DNA (mtDNA) was extracted from the cave sediments dated to
100 ka, 60 ka, and possibly to 45 ka from reworked deposits [24]. Jiangjunfu 01 is a site dated to
120–90 ka that is identified by a small sample of lithics collected from exposed geological sections
[25]. Recently, the Acheulean-like handaxes from the Piluo site were reported older than 130 ka,
but are known only from press releases [26]. More surprising is the claim of early rock art at Chusang
site that is said to be ca. 226–169 ka [27]. It raises concerns regarding the dating of the footprints and
handprints, and their interpretation as evidence for art. There is an increasing number of findings chal-
lenging the view that H. sapienswas the first and only hominin species to adapt in a hypoxic environ-
ment [28,29]. Overall, the evidence points toward a longer history of hominin activities on the TP.
However, the Xiahe specimen lacks archaeological context, and themtDNA retrieved from sediments
is unable to identify genomic variants relevant to high-altitude adaptation. So, further evidence of
ancient nuclear DNA, fossils, and full-scale excavations are needed to understand the morphology,
biology, and behavior of the archaic hominins on the plateau.

The Great Lakes Period (late MIS3)
The late MIS3 (40–30 ka) of the plateau, sometimes referred to as the ‘Great Lakes Period’, is
characterized by increased temperature, precipitation, and lake levels due to an enhanced sum-
mermonsoon [6,30–32]. Dated between 40 and 30 ka, the systematically excavated open-air site
of Nwya Devu indicates that hunter-gatherers reached the hinterland (4600masl) during this tem-
perate episode, much earlier than previously known [20]. This site documents the earliest blade
production uncovered in the highland, a technology rare in China but typical for the early Upper
Paleolithic in the Eurasian Steppe [33,34]. Other sites, such as Siling Co, Xiao Qaidam, and
Lenghu Locality, have been indirectly dated to ca. 30 ka – for example, samples from neighboring
geological sections [11,35,36]. But Siling Co is an example that warrants caution as it was re-
cently argued to be much younger [37]. With only a single excavated site, what the settlement
patterns and behavioral adaptation of the hunter-gatherers were during the Great Lakes Period
remain unclear.

Last deglaciation
Starting from ca. 25 ka, the last glacial maximum (LGM) is marked by a significant cooling, with
temperatures 4–7°C lower than they are today [38–40]. There is no site firmly dated to this period,
suggesting an elusive human presence on the plateau in such an inhospitable environment before
the milder climate of the last deglaciation – another period suitable for human occupation [41].
Madsen and colleagues referred to sites of this period as 'Late Upper Paleolithic short-term
logistical camps' [42,43], primarily studied from surveys and test-pits [43,44]. A recent
zooarchaeological study by excavation on site ‘151’ in Qinghai has provided an example of
highmobility and short occupation [45]. Stone tools are described asmicroblades, a technology
that was widespread in lowland North China after the LGM [46]. For this period, we note that sites
cluster in the northeast margin of the TP (Figure 1) but whether this pattern represents a behav-
ioral, preservation, or visibility bias is unclear.
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Glossary
Admixture: the exchange of genetic
materials between two previously
isolated populations, often facilitated by
migrations.
Blade: a type of stone flake whose
length is at least twice the width. It often
shows two parallel edges, and the
negatives of previous blade removals on
its upper face show the systematic
character of the production.
Holocene climate optimum: a period
of temperate climate usually dated from
8 ka to 4 ka years ago.
Hypoxia: a condition that occurs when
there is insufficient oxygen supply to
tissues. Hypobaric hypoxia is caused by
decreased oxygen concentration in the
air at high altitudes leading to altitude
sickness that could be fatal for human
beings.
Introgression: a form of admixture, the
introduction of genetic information from
one species to another as a result of
hybridization, such as genetic materials
originally carried by extinct archaic
hominins (Neanderthals or Denisovans)
into Homo sapiens.
Last deglaciation: a period of deglacial
process that occurs around 17–11.7 ka
with melting glacial ice sheets and a
rising sea level after LGM.
Last glacial cycle: the glacial period
from 115 ka to 11.7 ka between the
penultimate and current interglacial.
Last glacial maximum (LGM): an
extremely cold and dry period (25–19 ka)
when global ice sheets reach the
maximum and the sea level is about
110–125 m lower than it is today.
Marine Isotope Stage (MIS): a global
climatic sequence established from the
marine record based on the isotopic
composition of ice cores; it refers to
glacial/interglacial cycles with an
assigned number for each stage: even
numbers for glacial and odd numbers for
interglacial. MIS6 is a glacial episode of
190–130 ka. MIS5 is between 130 ka
and 71 ka. MIS4 is from 71 ka to 60 ka.
MIS3 is a relatively warm phase around
60–30 ka.
Microblade: like blades, microblade is
smaller in size and produced by
pressure flaking instead of direct
percussion.
Neolithic: regional changes around the
boundary of Pleistocene and Holocene
when some human cultures shifted to an
economy characterized by agriculture,
animal husbandry, and technologies like
ground stone tools and pottery.
Holocene climate optimum
The abrupt cooling in the Younger Dryas (YD) [44,47] appears to correspond with a significant
reduction in human activities. Then the fourth period coincides with the onset of the Holocene
climate optimum [48,49]. Sites dated between 8 and 6 ka mainly document a technological
continuity from previous traditions (e.g., microblade) [50–52], while after 6 ka, Neolithic cultural
innovations, such as ground stone, painted pottery, and agriculture, gradually appeared and
sometimes coexisted with microblade technology [53–57]. The distribution of various artifact
forms illustrates contacts and exchange networks with different lowland groups. Additionally,
some researchers argued that year-round settlements were established by farming groups
around 3.6 ka during this period [12,58], thereby opposing the claim that it was made by
hunter-gatherers between 30 ka and 8 ka [22,59,60].

To summarize, we observe four distinct periods of human occupation, separated by apparent
gaps in the archaeological and fossil records. Denisovans would be the first to visit TP long before
late MIS3. Evidence for H. sapiens, indicated by cultural artifacts, is as early as 40 ka, and occu-
pations appear roughly correlated with temperate episodes and technological changes along
with gaps under cold/dry climates. However, the gaps between these occupations may reflect
a low-resolution dataset, a behavioral pattern, or a combination of both. The connection between
archaeological occupations and environmental records has not been fully established yet.

Genetic adaptations: archaic introgression and natural selection
Geographic isolation from lowlands and the selective pressure of hypoxia are essential factors for
the shaping of fitness of Tibetan populations. Hence, genetic studies have focused on identifying
the beneficial genes for high-altitude adaptations and inferring the Tibetan demographic history.
Another key component in the high-altitude adaptation of Tibetans is the role of adaptive intro-
gression from Denisovans [18], while the timing and geographical range of the introgressions re-
main controversial.

Archaic Denisovan introgression
Long-term exposure to a hypoxic environment has led to a suite of changes in the physiology of
Tibetans [61,62]. As a result, multiple genes involved in regulating oxygen supply and cardiovas-
cular functions have been identified as candidates contributing to high-altitude adaptation
[62–66]. Among all the genes, the Endothelial Pas1 (EPAS1) gene is the most studied one for
its strong positive signal associatedwith an unelevated hemoglobin level in a hypoxic environment
– which is considered beneficial and unique to Tibetan populations [13]. EPAS1 shows a signa-
ture of adaptive introgression from Denisovan-like hominins [18,19,67], which is characterized
by the adaptive haplotype of EPAS1 exhibiting a strikingly high affinity to the Denisovan genome
sequenced from a fossil at Denisova Cave in the Altai Mountains [23,68]. The haplotype is either
absent or present at an extremely low frequency in neighboring populations [18,69], suggesting
an adaptive introgression from Altai Denisovan hominins.

Moreover, recent studies identify at least four pulses of Denisovan-like admixture in populations
of Asia and Oceania: one shared within Asians and Oceanians [70–72], one unique to Papuans
[71–73], one unique to East Asians [70,72,74], and one to Ayta Magbukon in the Philippines
[75]. The genetic estimations of these introgressions yielded a broad range from as early as
55 ka to as recently as 12 ka (Table 1). This age discrepancy may reflect a difference in estimating
methods, type and sample of analysis data, or the assumption of single pulse of Denisovan intro-
gression in studies prior to 2018. Consequently, it raises the questions of when, where, and from
which Denisovan population the beneficial EPAS1 haplotype was passed to Tibetans. A recent
study identified an East Asian-specific introgression around 48 ka being the event that introduced
Trends in Ecology & Evolution, March 2022, Vol. 37, No. 3 259
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Pleistocene and Holocene: the
Pleistocene, ranging from 2.6 million
years ago to 11.7 ka, is divided into the
Early, Middle, and Late Pleistocene by
770 ka and 126 ka respectively. After
11.7 ka, it enters the Holocene.
Population split (divergence): refers
to the forming of isolated subpopulations
from ancestral populations without gene
flow; it usually predates genetic
divergence, the coalescence time from
last common ancestors.
Upper Paleolithic: part of a
periodization system, used in Eurasia,
based on major changes observed in
the archaeological record. Dependeing
on the region, it usually starts from 50 ka
to 30 ka and is defined by technological
changes in lithic production (such as
blade and bladelet), formal tools made of
bone, antler or ivory, personal
ornaments, and cave arts, as well as a
general shift toward diversified
subsistence practices.
Younger Dryas (YD): an abrupt
cooling in 12.8–11.7 ka; it is named after
a cold-adapted Arctic wildflower
expanding into Europe during this
period.
the beneficial EPAS1 haplotype [74]. Two other studies also revealed the introgression at ca. 46 ka,
including East Asians [71,72]. Generally, the encounters between H. sapiens ancestors of East
Asians and Denisovans around 48–46 ka are possibly instrumental in the high-altitude adaptation
of present-day Tibetan populations.

The onset of positive selection and the Tibetan–Han population split
The genes with exclusively high frequency in Tibetans, compared with neighboring lowland pop-
ulations, are considered targets of positive selection for high-altitude adaptation. Therefore, the
timing of selection of these genes is often used as a proxy for the onset of adaptation and perma-
nent settlement. Age estimates for the selection of the EPAS1 gene show a relatively wide range
(18.3–2.8 ka) (Table 1). Despite the large interval, themajority of studies indicate that selection oc-
curred after the LGM, much later than the Denisovan introgression. Findings of human remains
with ancient (nuclear) DNA from this plateau can provide additional context and finer resolution
for the timeline of high-altitude adaptations. However, ancient nuclear DNA is rare on the TP,
and so far, only one study has reported limited samples on the Nepalese side of the Himalayas,
from 1.75 to 1.25 ka, that contain the adaptive EPAS1 allele [76].

Considering the geographic isolation of the TP, the timing of the population split between
Tibetans and lowland Chinese is another reference to the adaptation, but it bears similar
problems of chronological resolution that varies from 60 ka to nearly 2.7 ka (Table 1). In addition
to the difference in samples and methods, the inconsistency in the age of the population split can
be partially explained by the continuous gene flow between Tibetans and Han Chinese [17,77],
which has increased substantially in recent history and may conflate the coalescence between
Tibetans and lowlanders.

In sum, genetic studies have elucidated the age of the Denisovan introgression into East Asians,
suggesting that contacts between Denisovans and the ancestors of East Asians took place some-
where between the Siberian Altai and the TP no sooner than 48–46 ka [71,72,74]. The separation
between Tibetans and Han Chinese likely occurred after the Denisovan introgression. The age
estimates can be confounded by multiple aforementioned factors that range from 60 ka to 3 ka.
Lastly, most results on the positive selection on introgressed EPAS1 cluster around the boundary
of Pleistocene/Holocene (ca. 13–7 ka). On this account, the positive selection would have happened
before the introduction of agriculture in the region and favors a scenario of permanent settlements by
hunter-gatherers. While the genetic estimated times of archaic introgression, selection, and popula-
tion split currently share the same issue of bearing large intervals, this is caused by multiple factors
including the stochasticity during long-term evolution, the complex mechanisms contributing to the
observed genomic patterns, as well as the assumptions of genetic models. Until more ancient
DNA becomes available to refine the demographic models, the genetic age estimates should be
used with caution and supplemented with archaeological and paleoanthropological data.

Human occupations of the TP: discontinuity or continuity?
The earliest occupation of the TP is likely by the Denisovans, as is indicated by data from Baishiya
Cave; the Denisovans visited the northeast margin several times between 160 ka and 60 ka, pos-
sibly earlier or later [21,24]. Nevertheless, we still do not know if these Denisovans were biologi-
cally adapted to high altitudes as no Denisovan nuclear DNA that includes the EPAS1 locus is
known from the highland. Future discoveries are critical to examine whether they had direct con-
tacts with H. sapiens on the plateau.

For occupations of H. sapiens, three major issues stand out. First, despite multiple occupation
episodes identified in the archaeological record, the beginning of permanent settlements is
260 Trends in Ecology & Evolution, March 2022, Vol. 37, No. 3
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Figure 1. The distribution of archaeological sites on the Tibetan Plateau (TP). Sites were either dated directly through excavations or the age of sites and survey
materials was estimated. Four major occupation periods are included: (i) MIS 6–4 (Phase 1): Baishiya Cave (Xiahe), Jiangjunfu 01; (ii) Late MIS3 (Phase 2): Nwya Devu, Siling
Co, Xiao Qiaodam, Lenghu; (iii) Last deglaciation (Phase 3): Jiangxigou, Qinghai 151, Xiadawu, Heimahe, Yantaidong, Koula, Xiatongbao; and (iv) Holocene climate
optimum (Phase 4): Tshem gzhung kha thog, Donggi Cona, Xidatan, Layihai, Chusang, Karou, Zongri, Nuomuhong, Changguogou, Qugong. (Geographic mapi and
GMTED2010 digital elevation dataii [91].)
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unclear. Second, whether there was a direct link between occupation gaps and climate change
requires confirmation from high-resolution research data. Third, the wide range of estimated
times regarding the key events related to adaptive introgression provides a rough outline for
the emergence of adaptations in Tibetans. Consequently, two hypothetical peopling models
posit a discontinuous occupation and a continuous occupation and are both consistent with
existing evidence (Figure 2). Currently the low-resolution data does not allow a complete
validation/rejection of either hypothesis. However, the models could establish an interpretative
framework with clearly archaeological and genetic predictions for further studies.

Model A: discontinuous occupation
This model postulates a discontinuous human occupation with multiple visits/attempts at
settlement by Denisovans and Pleistocene H. sapiens, but the plateau was not permanently
occupied until the Holocene. The failure of settlement attempts during the Pleistocene could be
explained by local extinctions or retreats to lowlands due to external factors such as hypoxia and
extreme climate.
Trends in Ecology & Evolution, March 2022, Vol. 37, No. 3 261
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Table 1. The date of genetic estimations of the three events related to high-altitude adaptations

Date of estimation (ka) Refs

Denisovan admixture Han–Tibetan divergence EPAS1 selection

– 2.7 ka – [14]

– – 18.3 ka [63]

– 30 ka – [15]

– – 12.8 ka [92]

– – 10–2.8 ka [69]

54–44 ka – – [93]

62–38 ka 15–9 ka 9–7 ka [16]

– 4.7 ka – [94]

32–12 ka 58–44 ka 12 ka [17]

46 ka (Asia and Oceania); 30 ka (Papua) – – [72]

46 ka (East/Southeast Asia); 25 ka (Papua) – – [71]

48 ka (East Asia) – 9 ka [74]

53 ka (Philippine Ayta) – – [75]
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Under this model, the observed gaps in LGM and YD are sterile layers between occupation pe-
riods that should be confirmed by well-established geoarchaeological records leading to the
fact of 'evidence of absence'. Another prediction is that well-documented archaeological and en-
vironmental sequences will demonstrate the association between population discontinuity and
the climate deteriorations. Besides, substantial changes in material culture of the TP would be
synchronous with those cultural changes in the near lowlands, following a similar pathway as
hunter-gatherer behaviors change over time. More importantly, it means that, in the discontinu-
ous model, permanent occupation or year-round settlement at high altitudes would emerge
only in the Holocene. Namely, the Pleistocene sites of the TP would be mere incursions, or sea-
sonal occupations, in contrast to residential base camps at low altitudes. Their geographic distri-
bution would therefore illustrate distinct settlement patterns between high and low elevations.

Genetically, the Denisovan introgression likely occurred to ancestral East Asians as early as 48–
46 ka [71,72,74], prior to the population split between Tibetans and Han Chinese in the lowlands.
If ancient nuclear DNAs were to be yielded from Denisovan remains on the TP, it is unlikely that
they would harbor the adaptive EPAS1 haplotype and would show little genetic contribution to
the modern Tibetan gene pool. Likewise, Pleistocene H. sapiens in the region would be unlikely
to have adaptive genes and would not be direct ancestors to present-day Tibetans. As a result,
the onset of positive selection on all high-altitude adaptive genes, including EPAS1, should be
around the Holocene at a similar time to the Tibetans’ isolation from the lowland Chinese.

Model B: continuous occupation
This model posits a greater time-depth for permanent settlements by H. sapiens from the Great
Lake Period to the Holocene (Figure 2), with limited population fluctuations caused by genetic
bottlenecks in highland populations or migrations from lowlands. In this context, hunter-
gatherers of the late MIS3 successfully settled in the high-altitude environment and were
among the direct ancestors of the present-day Tibetans.

In terms of archaeology, this model predicts that the gaps are due to small sample size and/or
preservation bias. Thus, we expect new findings with secure dates from the LGM and YD to fill
262 Trends in Ecology & Evolution, March 2022, Vol. 37, No. 3
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Figure 2. Current evidence and two models for the population history of the Tibetan Plateau (TP). The middle of the figure shows existing evidence from
archaeology and genetics of a timeline, with four periods of occupation: (i) represented by Baishiya Cave since late MIS6 to the MIS4; (ii) a blade assemblage,
excavated from the Nwya Devu site in late MIS3, also known as the Great Lake Period; (iii) microblade assemblages of the Late Upper Paleolithic; and (iv) the Holocene
Neolithic expansion. The genomic studies provide molecular chronological estimates for the Denisovan introgression, natural selection, and population divergence.
Model A (left) displays discontinuous occupations before permanent settlement occurred during the Holocene. It means local extinctions for Pleistocene groups due to
hypoxia, extreme climate events, and/or other factors. Model B (right) illustrates a continuous occupation from the Great Lake Period to the Holocene, with permanent
settlements as early as 40–30 ka, possibly with population inputs from lowlands. Abbreviations: ka, thousand years ago.
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these gaps. Behaviorally, we may anticipate a divergent pace of cultural changes between low-
lands and highlands. Cultures at high altitudes would be found with local innovations, transmitted
over time, that are adaptations to the environmental pressures rather than lowland incursions.
Early year-round settlements before the Holocene should be established by studies on site func-
tions and fauna analysis relevant to seasonality and mobility. Ecological models may be supple-
mentary to predict refugia or movement patterns during climate degradations [78,79]. In this
case, hunter-gatherers continually occupy high elevations despite extreme climates in LGM
and YD, and agriculture is not the prerequisite for year-round settlement.

In genetics, the Denisovan introgression could have occurred in lowlands around 48–46 ka, as in
Model A. If moreDenisovan fossils were found on the plateau, especially if they contained the adap-
tive EPAS1 haplotype, it would open the possibility of additional adaptive introgression(s) into
H. sapiens at high altitudes. For high-altitude adaptation we would expect that selection of major
adaptive genes, including EPAS1, would predate the LGM. However, other mechanisms
Trends in Ecology & Evolution, March 2022, Vol. 37, No. 3 263
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Outstanding questions
The identification of Denisovan remains
on the TP raises fundamental ques-
tions on how and when this population
expanded up to the high-elevation pla-
teau. Were the archaic hominins
adapted to high-elevation environ-
ments? Did they adopt a specific be-
havior at high altitudes? What was the
demography and geographic distribu-
tion of archaic Denisovans in Asia?

A haplotype of the EPAS1 gene
transmitted from Denisovans as early
as 48 000 years ago benefits the
high-altitude adaptation of Tibetan
populations, but the positive selection
of the haplotype is much younger.
With multiple admixture events be-
tween Denisovans and H. sapiens
now documented, in which region did
H. sapiens get the EPAS1 introgres-
sion? How frequent was the EPAS1
haplotype within the Denisovan re-
gional populations?

Specific behaviors, such as the
production of blades, suddenly
appeared on the TP as early as 40
000 years ago, probably coming from
the Eurasian Steppe. How did the
hunter-gatherers adapt their technol-
ogy to the extreme environment?
What mechanisms led to the diffusion
of technology: cultural diffusion or pop-
ulation movements?

Living hunter-gatherers often adapt the
frequency of their movement to the
landscape, depending on seasons
(e.g., recent admixture, the presence of deleterious mutations) may impact the inference of positive
selection and the identification of adaptive introgression [80]. For example, Deedu Mongolians
adapted to high altitudes only recently, after their initial migration to the TP, 500 years ago [81],
and it remains unclear whether such adaptation represents an independent process – or was facil-
itated by recentmigrations or by shared ancestry with Tibetans. Lastly, a deep divergence between
Tibetans and Han Chinese prior to the LGM is expected due to their early isolation from the
lowlands.

Concluding remarks
New discoveries accumulate rapidly and continue to improve our understanding of the population
history of the TP, while the few existing syntheses relied heavily on archaeological findings
[10,11,22]. Using a cross-disciplinary approach, we propose two parsimonious but distinct
models for the population history of the high-altitude TP. The models are constructed to reach
the consistency between archaeology and genetics, but the challenges specific to each field re-
main. For example, archaeological data seemingly illustrate multiple discrete occupation epi-
sodes, but this may reflect the fragmentary nature of the record. Genomic studies provide
chronological estimates for the split between Tibetans and lowland Chinese and for the selection
of adaptive genes; nonetheless, the results are consistent with both continuity and discontinuity
(Table 1). So, a high-resolution dataset is required to overcome such challenges in order to test
the model predictions presented above.

As data resolution improves, it might open another possibility of less parsimonious scenarios
(e.g., more than one adaptation in different groups), but for now, even the two simple models can-
not be fully validated or rejected. Current evidence suggests that Denisovansmay have visited the
highland repeatedly between (or beyond) the MIS6–MIS4. Nevertheless, without ancient nuclear
DNA, directly associated fossil and cultural remains, and explicitly geographic distribution, it is un-
known whether or not they adapted to high altitudes. Among the identified Denisovan introgres-
sions, the specific pulse from Altai Denisovan-related populations to East Asians likely introduced
the EPAS1 haplotype around 48–46 ka in lowlands [18,71,72,74]. Many results suggested the
haplotype being positively selected between terminal Pleistocene and early Holocene (Table 1),
nearly 40 000–30 000 years after the initial introgression. Yet, it seems too early to conclude
which human species – H. sapiens, Denisovans, or other unknown archaic hominins [82] – was
Box 1. The dispersal of H. sapiens and the Initial Upper Paleolithic

Following the 'Out of Africa II' model, two expansion routes into eastern Asia are proposed: the southern route and the north-
ern route. The southern route favors a dispersal from East Africa, following coastlines of South Asia and arriving in Australia as
early as 60–50 ka [95,96]. The northern route refers to a dispersal through the Levant and then across Central and North Asia
into East Asia around 50 ka [97,98]. The two dispersal routes may imply different adaptive pathways. The northern route has
a mostly middle and relatively high-latitude continental climate. It is supported by the fossil of Ust’-Isinhim in Western Siberia
and Tianyuan Man in North China dated to 45 ka and 42–39 ka respectively [84,99,100], as well as by the spread of an ar-
chaeological technocomplex known as the Initial Upper Paleolithic industry (IUP). The latter is a type of specific stone tool
technology that appeared at the age of transition between the Middle Paleolithic and the classic Upper Paleolithic [101]. It
is widely found and known in West Asia (Levant), Eastern Europe, and Central and North Asia. IUP sites of the eastern Eur-
asian Steppe (including Central Asia, Siberian Altai, and North Mongolia) are mostly dated to 48–40 ka [28,34,83,102] and
are contemporary with the H. sapiens fossils mentioned above. The IUP assemblages are chiefly dominated by systematic
blade productions following specific methods (such as asymmetric cores and burin-core reductions) [34,103]. They are
sometimes also uncoveredwith the formal bone, antler, or ivory tools, and the use of personal ornaments [104]. The dispersal
of the IUP is viewed as an early step toward the generalization of behaviors that characterize the earlyH. sapiens hunter-gath-
erer populations, along with the shift in subsistence practices and social organization, and/or spectacular developments in
mobile and cave art [28,105,106]. The new discovery at the Bacho-Kiro cave (Bulgaria) in Eastern Europe indicates that H.
sapiens is the maker of IUP based on the human remains that were found directly associatedwith the stone tool assemblage
dated to ca. 45 ka, and the fossil individuals had a closer genetic affinity with present-day East Asians than with modern Eu-
ropeans. [86,87].
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the first to physiologically achieve adaptation in the high-altitude environment. The presence of
the high-altitude-adaptive EPAS1 haplotype in a single Denisovan reference genome does not in-
form on its frequency in Denisovan populations, nor does it speak to its biological function at the
species level.

After the period of Denisovans, acknowledging current data limitations, it is worth noting that the
archaeological and genetic evidence converge on a scenario of human dispersal. The sudden oc-
currence of blade technology at Nwya Devu (40–30 ka) points toward a potential connection with
the Initial Upper Paleolithic (IUP) dated to 48–40 ka in the eastern Steppe zone (including Central
Asia, Siberian Altai, and North Mongolia) [34,83], which is contemporaneous with H. sapiens
fossils in Siberia (45 ka) [84] and the Denisovan EPAS1 introgression into East Asians (48–46
ka). IUP assemblages as the earliest systematic blade production widely found in the Siberian
Altai and North Mongolia are usually perceived as evidence of early H. sapiens dispersal
[28,34,85] (Box 1). In addition, the human remains from Bacho-Kiro cave indicates that the
H. sapiens inviduals produced the IUP stone tools and had genetic connections to present-day
East Asians [86,87]. In lowland East Asia, blade assemblages are rare but a clear example of
IUP assemblage is dated to 41–34 ka at the Shuiddongou site in North China [33,88,89]. Collec-
tively, the blade assemblages and the H. sapiens fossils, with the adaptive introgression from
Denisovans, suggest a hypothetical but compelling scenario: H. sapiens arrived in the Siberian
Altai near 48 ka, reached North Mongolia around 45 ka, and finally expanded to North China
and the TP as early as 40 ka. Hunter-gatherers might have brought a form of blade technology
along with the introgressed EPAS1 haplotype into East Asia. Connections between Steppe belt
and East Asia might also be frequent in a later period, as Neolithic Tibetans are genetically closer
to northern Neolithic East Asians and Siberians than to southern Neolithic groups [90].

Finally, our two models should help with refining the population history of the plateau and ad-
dressing specific issues (see Outstanding questions), such as early contacts between the plateau
and the Steppe belt, or the geographic and chronological overlap between H. sapiens and
Denisovans. We emphasize the value of integrating archaeology and genetics into the population
history and evolutionary process of the high-altitude adaptation in the TP.We hope that this study
will encourage further collaborations across disciplines in and beyond this region.
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