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Although the superbly preserved specimens of Onychodus jandemarrai have greatly advanced our

understanding of the Onychodontiformes, a primitive sarcopterygian group with large parasymphysial

tooth whorls, the scarcity of the otoccipital material in the group hampers further morphological comparisons

between onychodonts and other sarcopterygian groups. Here we report a new onychodont Qingmenodus yui

gen. et sp. nov. from the Early Devonian (Pragian) of South China that comprises well-ossified otoccipital and

upper and lower jaw material. As one of the oldest known onychodonts, Qingmenodus shows for the first time

the nearly complete structure of the otoccipital in onychodonts and provides an additional basis to address

the phylogenetic position of the group. Its elongated otic shelf exhibits the posterior shift of the attachment

for the basicranial muscle as in coelacanths and sheds light on the feeding mechanism of onychodonts.

Qingmenodus displays a mosaic of primitive and derived onychodont features. The phylogenetic analysis

places Qingmenodus immediately basal to the clade comprising Onychodus and Grossius.

Keywords: onychodonts; evolution; Early Devonian; otoccipital; feeding mechanism;

phylogenetic analysis
1. INTRODUCTION
The Onychodontiformes (or ‘Struniiformes’) are a Devonian

sarcopterygian group, with five genera currently described

(Onychodus, Newberry 1857; Strunius, Jessen 1966; Grossius,

Schultze 1973; Lukeus, Young & Schultze 2005; Bukkanodus,

Johanson et al. 2007). Two mandibles, respectively, from the

Lochkovian and Pragian of South China (Zhu & Janvier

1994; Zhu & Yu 2004), and Bukkanodus from the Pragian

of Australia (Johanson et al. 2007), are among the oldest

known onychodonts. The most well-known onychodont

is Onychodus jandemarrai from the Frasnian of Western

Australia (Andrews et al. 2006).

It is widely recognized that the Onychodontiformes are

a monophyletic group (Cloutier & Ahlberg 1996; Janvier

1996; Andrews et al. 2006; Campbell & Barwick 2006),

except by Friedman (2007), who reconstructed Strunius

and Onychodus as a paraphyletic grade that forms the

immediate sister group to the crown group Sarcopterygii.

Opinions differ mainly in the affinities of the group within

the Sarcopterygii, which fall in one of the three positions:

(i) together with Psarolepis, sister to the crown group

Sarcopterygii (Long 2001); (ii) sister to the actinistians

(Zhu & Schultze 1997, 2001; Zhu et al. 1999, 2001,
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2006); and (iii) above actinistians, sister to the clade con-

taining dipnomorphs and tetrapodomorphs (Cloutier &

Ahlberg 1996), or tetrapodomorphs plus a subset of dip-

nomorphs (Schultze 1987; Long 1989; Young et al. 1992).

The superbly preserved specimens of O. jandemarrai

have provided a wealth of anatomical information for

the understanding of the group; however, few data are

known of the otoccipital (Schultze 1973; Andrews et al.

2006), thus the posterior extent of the basicranial

muscle and its relationship to the intracranial joint and

feeding mechanism remain enigmatic. The scarcity of

the otoccipital material also hampers further morphologi-

cal comparisons between onychodonts and other sarcop-

terygian groups.

Here we report a new onychodont from the Pragian of

Yunnan, South China (see electronic supplementary

material A), exemplified by a posterior cranial portion

with extensively ossified otoccipital and some disarticu-

lated bones. The new form reveals some features of ony-

chodont affinity; for example, elongated postparietal,

anteriorly positioned tabular, mandibular sensory canal

through the lowermost part of the infradentary series

with many tubes and striated enamel on the parasymphy-

sial tusk. It is unique in its dermal surface covered with

closely spaced tiny pores and vermiculate branches of

the otic canal. The new form is among the oldest

known onychodonts and exhibits for the first time the

nearly complete structure of the otoccipital in onycho-

donts, thus improving our understanding of the feeding

mechanism and evolution of the Onychodontiformes.
This journal is q 2009 The Royal Society
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2. SYSTEMATIC PALAEONTOLOGY
Osteichthyes, Huxley (1880)

Sarcopterygii, Romer (1955)

Onychodontiformes (i.e. Onychodontida, Andrews 1973)

Onychodontidae, Woodward (1891)

Qingmenodus yui gen. et sp. nov.

(a) Holotype

IVPP V 16003.1, a posterior cranial portion.

(b) Referred specimen

A maxillary (IVPP V 16003.2), an incomplete mandible

(IVPP V 16003.3) and a detached parasymphysial tusk

(IVPP V 16003.4).

(c) Etymology

The generic name is after the type locality ‘Qingmen’ and

Greek ‘odus’, tooth. The specific name is after Dr Yu

Xiaobo (Kean University), to acknowledge his contri-

bution to the study of early sarcopterygians.

(d) Locality and horizon

All of the specimens were recovered in 2005–2006 from

an outcrop near the Qingmen reservoir in the suburb of

Zhaotong, northeastern Yunnan, China. The horizon

belongs to the Posongchong Formation, which is of late

Pragian age (Liao et al. 1978; Hao et al. 2004).

(e) Diagnosis

A small onychodont with the following suite of characters

that distinguish it from other members of this group

(autapomorphies marked with an asterisk): dermal sur-

face covered with closely spaced tiny pores*; elongated

postparietal (about four times as long as wide, different

from Strunius and Bukkanodus); vermiculate branches of

the otic canal*; postparietals extending posteriorly

between lateral extrascapulars (as in Strunius, Onychodus

and Grossius, unknown in Bukkanodus); large attachment

area for the basicranial muscle behind the lateral commis-

sure (unknown in other onychodonts); saccular bulge

dorsal to the posterior portion of the otic shelf*; cluster

of large pits (as in Bukkanodus); mandibular sensory

canal through the lowermost part of the infradentary

series with many tubes (as in Strunius and Onychodus,

unknown in Bukkanodus and Grossius); and striated

enamel on the parasymphysial tusk (as in other

onychodonts).
3. DESCRIPTION
The holotype of Q. yui has preserved paired postparietals

and tabulars, but lacks the supratemporals (figure 1a).

The dermal ornament consists of tiny pores, which are

much smaller and more closely spaced than those in Buk-

kanodus (Johanson et al. 2007). However, whether the

surface bears the enameloid covering needs histological

examination. In other onychodonts, the dermal surface

is ornamented with tubercles. The bone pattern of the

skull roof agrees with that of Onychodus (Andrews 1973;

Andrews et al. 2006) and Grossius (Schultze 1973). The

postparietal (figure 1a, Pp) is elongated with the length/

width index of approximately 400. By out-group compari-

son, the elongation of the postparietal in Qingmenodus,
Proc. R. Soc. B (2010)
Onychodus and Grossius (Jessen 1966; Andrews 1973;

Schultze 1973; Andrews et al. 2006) should be derived

in onychodonts. The postparietal in Strunius and Bukka-

nodus with the length/width index of approximately 200

represents a plesiomorphic condition. As in rhizodonts

(Andrews 1985; Long 1989; Johanson & Ahlberg 1998,

2001) and some onychodonts (Onychodus and Grossius),

the posteriorly tapering postparietals of Qingmenodus are

placed between the lateral extrascapulars (figure 1a,

Ext.l). Anteriorly, the postparietal is bordered laterally

by the tabular (figure 1a, Ta) and putative supratemporal

(figure 1a, St). Medially, the postparietal has two pairs of

pit-lines, the middle and posterior pit-lines (figure 1a,

pl.m, pl.p), as in other onychodonts. The tabular seems

to be rectangular in shape, although its anterior extremity

on both sides was broken. The tabular pit-line (figure 1a,

pl.Ta) is behind the level of the middle pit-line as in Stru-

nius and Bukkanodus (Jessen 1966; Johanson et al. 2007).

Noteworthy are many vermiculate impressions on the sur-

face of the posterior half of the postparietal shield, along

the sutures between the postparietals and tabulars. These

impressions are formed by the branches of the otic canal

(figure 1a, br.otc), exposed where the dermal surface has

been eroded. There are clusters of large pits scattered on

the postparietal shield, as in Bukkanodus. The overlapped

areas along the posterior and posterolateral margins of the

shield suggest that the lateral extrascapular extends

forwards and contacts the posterolateral margin of the

postparietal, as in Onychodus and Grossius.

The well-ossified otoccipital resembles that of coela-

canths in overall shape and proportion. Most striking is

that the otic shelf (figure 1b, ot.sh) increases posteriorly

in breadth to form a distinct depressed area (figure 1b,

or.m.bc), which agrees well with the area of origin of

the basicranial muscle (or subcranial muscle) in coela-

canths (Bjerring 1967, 1972; Jarvik 1980; Forey 1998).

This attachment area in Qingmenodus and coelacanths is

posterior to the lateral commissure, relating to the high

mobility of their intracranial joints. In other sarcoptery-

gians, the attachment area of the basicranial muscle, if

present, is usually anterior to or level with the lateral

commissure. The largest ossification of the otoccipital is

the prootic, which forms the lateral commissure

(figure 1b, lc), the otic shelf, the anterior wall of the

otic capsule and part of the lateral wall of the notochordal

canal. The lateral commissure seems to carry only one

articulation facet for the hyomandibular (figure 1b,

art.hy). The single-headed hyomandibular is also seen

in Psarolepis (Yu 1998), Onychodus (Andrews et al.

2006) and actinopterygians. Medial to the articulation

facet for the hyomandibular, the jugular canal

(figure 1b, c.ju) runs through the lateral commissure.

The ventral view of the otoccipital shows it to be remark-

able in its basicranial fenestra (figure 1b, fe.bc), otic shelf

and basiocciptal ossification. The basicranial fenestra, the

opening of the notochordal canal in the otoccipital area, is

oblong in outline. The otic shelf is remarkably elongated

and occupies a majority of the ventral surface of the otoc-

cipital. The ossified otic capsules display the external

ampulla (figure 1b, am.e) and part of the impression for

semicircular canals. A putative vestibular fontanelle is

found in Qingmenodus. Dorsal to the posterior portion

of the otic shelf, there is a well-developed process covered

with a very thin bone. This process, which we term the

http://rspb.royalsocietypublishing.org/
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Figure 1. Qingmenodus yui gen. and sp. nov., late Pragian, Zhaotong, South China. Posterior cranial portion (holotype, IVPP V
16003.1) in (a) dorsal, (b) ventral, (c) lateral and (d) posterior views, and (e) mandible (IVPP V 16003.3, reversed for ease of

reconstruction), maxillary (IVPP V 16003.2), parasymphysial tusk (IVPP V 16003.4) and their reconstruction. Scale bar,
1 cm; the reconstruction of the parasymphysial tusk is not to scale. am.e, external ampulla; art.hy, articulation facet for
hyomandibular; br.mc, branches of mandibular canal; br.otc, branches of otic canal; c.ju, jugal canal; c.x, canal
for N. vagus; De, dentary; Ext.l, lateral extrascapular; Ext.m, median extrascapular; fe.bc, basicranial fenestra; f.lab, fenestra
in wall of otic capsule; fm, foramen magnum; gr.a.dl, groove for lateral dorsal aorta; ioc, infraorbital canal; lc, lateral commis-

sure; mc, mandibular canal; Mx, maxillary; nc, canal for notochord; orb, orbit; or.m.bc, origin of the basicranial muscle; ot.sh,
otic shelf; pl.a.Md, anterior pit-line of mandible; pl.m, middle pit-line; pl.p, posterior pit-line; pl.Ta, tabular pit-line;
Pp, postparietal; psy.t, parasymphysial tusk; sac.b, saccular bulge; St, supratemporal; Ta, tabular.
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saccular bulge (figure 1c, sac.b), corresponds topologic-

ally to the vestibular fontanelle of other sarcopterygians

and might result from the lateral wall of the sacculus

filling in the vestibular fontanelle. A large foramen

dorsal to the saccular bulge represents the fenestra on

the lateral wall of the otic capsule (figure 1c, f.lab). A

similar fenestra is also present in Youngolepis, Onychodus,

Styloichthys and some coelacanths (Bjerring 1972;

Chang 1982; Forey 1998; Zhu & Yu 2002; Andrews

et al. 2006; Friedman 2007). The basioccipital extends

forward to suture with the otic shelf. Posteriorly, the

basioccipital represents a rather stout, smooth basicranial

plate. The midline of the plate is somewhat elevated, and
Proc. R. Soc. B (2010)
a distinct groove (figure 1b, gr.a.dl) on each side of the

elevation represents the course of the dorsal aorta.

The maxillary (figure 1e, Mx, V 16003.2) is found

from the same site as the holotype. Its assignment to

Qingmenodus is mainly supported by the dermal surface

covered with closely spaced tiny pores. The overall

shape of the maxillary agrees with that of stem sarcopter-

ygians (Zhu et al. 2009). It possesses a posterior

expansion, as in actinopterygians, Psarolepis and other

onychodonts (Jessen 1966; Gardiner 1984; Zhu et al.

1999; Andrews et al. 2006). The anterior part of the

maxillary is low and adjoins the lachrymal and jugal.

The anterior extremity is broken but, as judged from

http://rspb.royalsocietypublishing.org/
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Figure 2. Phylogenetic relationships of the Onychodontiformes. A single most parsimonious tree is based on a PAUP v. 4.0b10
(Swofford 2003) analysis of the data matrix in electronic supplementary material B. Tree length, 46 steps; consistency index

(CI), 0.8696; homoplasy index (HI), 0.1304; retention index (RI), 0.8235; rescaled consistency index (RC), 0.7161. Equally
weighted solution places Bukkanodus, Strunius, Onychodus, Grossius and Qingmenodus as a monophyletic group (Onychodonti-
formes), and Qingmenodus forms a sister clade with Grossius þ Onychodus. Ext.l, lateral extrascapular; OG, outgroup; otc, otic
canal; pl.m, middle pit-line; pl.p, posterior pit-line; pl.Ta, tabular pit-line; Pp, postparietal; St, supratemporal; Ta, tabular.
Drawings not to scale. For a detailed list of synapomorphies for each node, refer to the electronic supplementary material.
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the preserved part and by reference to Strunius, the miss-

ing part should be very short. The maxillary teeth form a

continuous row along its ventral edge. Anteriorly, three

large marginal teeth are well preserved. They curve

slightly backwards and inwards as in O. jandemarrai.

The marginal teeth are reduced in size posteriorly, but

no tooth is observed on the posterior quarter of the bone.

The mandible (V 16003.3) is exposed in external view,

with the posterior part missing. It shares the same orna-

mentation with the postparietal shield and maxillary, and

is compatible to other referred specimens in size. From

the same site, Zhu & Janvier (1994) described an unnamed

onychodont mandible, which is much smaller and thinner

than V 16003.3. Based on the available data, we cannot

decide whether the differences between these two mand-

ibles result from the allometric growth of the same species

or the taxonomic discrimination. No suture is visible

between the dentary (figure 1e, De) and infradentaries.

The dentary teeth are large and cone-shaped, forming a

single tooth row. As in other onychodonts, the pulp

cavity of the conical tooth is quite large and without fold-

ing. The height of the mandible decreases anteriorly, but

increases in the symphysial region, where the Meckelian

attachment base for the parasymphysial tooth whorl is

not preserved. The sutures between the bones of the infra-

dentary series are indiscernible, yet the mandibular sensory

canal (figure 1e, mc) is evidently shown to run through the

lowest part of the infradentary series with many tubes

(figure 1e, br.mc), as in other onychodonts (Jessen 1966;

Andrews et al. 2006). One detached parasymphysial tusk

(figure 1e, psy.t), with the characteristic enamel striations

of onychodonts, is referred to the new form. The tusk is

slender, sigmoidally curved and swollen on the base.

Unlike Onychodus jaekeli and Strunius (Jessen 1966;

Upeniece 1995), Qingmenodus bears no harpoon-shaped

tip in the tusk.
4. DISCUSSION
(a) Phylogenetic analysis

Discovery of Qingmenodus adds to our knowledge of

the onychodont morphology that forms the basis for the
Proc. R. Soc. B (2010)
understanding of onychodont evolution. In order to

make a proper assessment of the phylogenetic position of

Qingmenodus, we proceeded by assembling a data matrix

of 39 characters and 8 taxa (see electronic supplementary

material B for a complete character list and codings for

all included taxa). Our data matrix is mainly based on

skull roof and mandibular anatomical characters.

Phylogenetic analysis yields a single most parsimo-

nious tree (figure 2), in which Qingmenodus is placed as

the sister taxon to the clade comprising Onychodus and

Grossius. The close relationship of Qingmenodus and

Onychodus þ Grossius is supported by the posteriorly

tapering and elongated postparietal, the length of which

is about four times the width. Bukkanodus represents

the most basal taxon among onychodonts. Diplocercides

(a primitive coelacanth) forms the sister taxon of onycho-

donts, and Styloichthys is resolved as the sister pair to

Diplocercides þ onychodonts.
(b) Intracranial joint and basicranial muscle

in Qingmenodus

The intracranial joint is a debatable feature of sarcopter-

ygians with respect to its function or its evolution (Janvier

1996). The coelacanth Latimeria is the only living

vertebrate with a movable intracranial joint, the function

of which is closely associated with the lengthened basicra-

nial muscle (Thomson 1966, 1967; Nelson 1970; Lauder

1980; Forey 1991, 1998). The basicranial muscle spans

the ventral portion of the intracranial joint and mainly

functions for the intracranial joint movements (Bemis &

Northcutt 1991; Northcutt & Bemis 1993). Previously,

studies have revealed that the joint is well developed in

coelacanths, yet less movable in rhipidistians (Thomson

1967; Alexander 1973; Lauder 1980; Forey 1998). In rhi-

pidistians and stem sarcopterygians with the otoccipital

preserved, such as Psarolepis, the attachment area of the

basicranial muscle is usually anterior to, or level with,

the lateral commissure. This marks a striking difference

from the posterior location of the attachment of the basi-

cranial muscle in coelacanths. Onychodonts are

extraordinary in their highly kinetic intracranial joint, as

http://rspb.royalsocietypublishing.org/
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inferred from the skull roof and available braincase

material (Andrews et al. 2006). However, the condition

of the basicranial muscle relating to the joint remains

unknown, because the otoccipital in the best-known

O. jandemarrai is not extensively ossified.

Here, we show for the first time the nearly complete

structure of the otoccipital in onychodonts. Qingmenodus

has the lengthened otic shelf with the posterior shift of

the attachment for the basicranial muscle, which has
Proc. R. Soc. B (2010)
greatly increased the length of the basicranial muscle.

This arrangement is quite similar to that in coelacanths,

in which the basicranial muscle is lengthened by the

anterior extension of the untoothed parasphenoid region

and the posterior shift of the muscle (Forey 1991).

Thus, we propose that the posterior shift of the attach-

ment in Qingmenodus and coelacanths is a derived

sarcopterygian feature (figure 3) and functions for more

flexible intracranial joint in these taxa.

http://rspb.royalsocietypublishing.org/
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(c) Feeding mechanism in onychodonts

When analysing the jaw-closing mechanism of Latimeria,

previous studies showed that the basicranial muscle in

coelacanths plays an important role in mouth closing

by executing movement at the intracranial joint (Thom-

son 1966, 1967; Alexander 1973; Lauder 1980; Forey

1991; 1998; Bernstein 2003; Levine et al. 2004). The

similar arrangement of the basicranial muscle in Qingme-

nodus suggests the same function of the muscle as in Lati-

meria. Considering the length of the basicranial muscle

relative to the total skull length, the basicranial muscle

in Qingmenodus should be more powerful than that in

coelacanths.

Andrews et al. (2006) discussed the unconstrained

adductor muscle attachment and the mandibular articula-

tion in Onychodus, and proposed that the flexible jaw

apparatus is responsible for the powerful and highly

kinetic biting in Onychodus. The available incomplete

otoccipital of Onychodus does not provide any evidence

about the arrangement of the basicranial muscle; how-

ever, its elongated postparietal shield, as in Qingmenodus,

indicates a lengthening of the otoccipital. If Onychodus

has its attachment area for the basicranial muscle on the

posterior half of the otoccipital as Qingmenodus and

coelacanths have, its putative well-developed basicranial

muscle must play an important role in feeding through

the movement of the intracranial joint (figure 4). Based

on this assumption, the feeding mode proposed by

Andrews et al. (2006) might be modified. We suggest

that the rapid and powerful bite in Onychodus, the best

representative of onychodonts, was achieved by the col-

laboration of the adductor muscle and the basicranial

muscle. However, the jaw-opening mechanism in Onycho-

dus needs further investigation (Andrews et al. 2006).
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