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Abstract New discoveries of fossil birds belonging to the

Jehol Biota uncovered from Lower Cretaceous lacustrine

deposits in northeastern China continue to greatly enrich

our understanding of the first major avian radiation. The

exceptional preservation of some fossils provides a rare

chance to discuss many biological issues that are usually

impossible to address in paleontological studies, such as:

the ossification pattern of the sternum in the extinct group

Enantiornithes, which is unlike that of modern birds and all

other archosaurs; the discovery of preserved crop, gizzard,

and intestinal contents in several clades which suggest that

a near-modern digestive tract including specialized crop

morphologies evolved early during avian evolution; and

the rare preservation of ovarian follicles which support

hypotheses that the right ovary was lost in Aves due to the

limitations of powered flight. Together, these data allow a

partial reconstruction of the biology of Aves very close to

its origin. While no skeletal or integumentary features are

recognized to define Aves, we identify two possible soft

tissue features that may biologically define Aves relative to

other amniotes: the presence of a crop and the loss of the

right ovary.
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Definition of Aves

Introduction

Our understanding of the early evolution of Aves has

grown exponentially over the past decades mostly as a

result of the spectacular discoveries that have steadily

poured out of China since the late 1980s (Hou et al. 1995;

Zhou et al. 1992, 2003; Zhou and Hou 2002; Zhou and

Zhang 2002, 2006b). The Lower Cretaceous Jehol Biota

preserves the second oldest definitive avian fossils after

Archaeopteryx and also the most diverse Cretaceous

avifauna known to science (Zhou 2006; Zhou and Zhang

2006b). Every Early Cretaceous avian clade is represented:

the Jeholornithiformes, a clade of long boney-tailed birds

only more derived than Archaeopteryx; the two basal py-

gostylian clades (birds whose abbreviated boney tail ends

in an compound element, the pygostyle) Sapeornithiformes

and Confuciusornithiformes; and the oldest record of the

two ornithothoracine clades, Enantiornithes and Or-

nithuromorpha (Zhou and Zhang 2006b). Neornithes,

which includes all living birds, is nested within the latter

clade (Chiappe 1995). Jeholornithiformes and the two py-

gostylian clades have only been collected in the Jehol Biota

and are potentially endemic (Zhou and Zhang 2006b). The

Jehol Biota preserves the greatest diversity of enantior-

nithines and ornithuromorphs of any avifauna, accounting

for nearly half of all recognized Cretaceous species

(O’Connor et al. 2011a; Zhou and Zhang 2006b).

Thousands of largely complete and articulated speci-

mens have been unearthed, revealing unprecedented data

on the skeletal morphology and diversity of basal birds, yet

these data have failed to reveal a pattern in the acquisition

of derived ‘avian’ skeletal features. Instead, the early

evolution of birds has often been described as mosaic:

confuciusornithiforms (including Confuciusornis and Eo-

confuciusornis) represent the oldest beaked avian clade but
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have a diapsid skull with a fully formed postorbital bar

(Chiappe et al. 1999; Zhang et al. 2008a) whereas the

postorbital is reduced in Archaeopteryx; Sapeornis, like

Archaeopteryx, has no sternum despite being the largest

Early Cretaceous bird and the presence of well-developed

sterna in all other avian clades (Zheng et al. 2014b); and

Jeholornis has a boney-tail longer than that of Ar-

chaeopteryx in both overall length and number of caudal

vertebrae (Zhou and Zhang 2003). Atypical of most fossils,

specimens from the Jehol Biota commonly preserve

feathers (Zhang et al. 2006) and in some cases also the

melanosomes responsible for their color (Zhang et al.

2010); more rarely, other soft tissues such as ovarian fol-

licles are preserved (Zheng et al. 2013). Ingested contents

are found preserved in nearly every segment of the

alimentary canal (Zheng et al. 2014a; Zhou et al. 2004).

The exceptional preservation of numerous young juvenile

enantiornithines and even one embryo reveal aspects of

development such as strategy and ossification patterns

(Chiappe et al. 2007; Zhou and Zhang 2004). Together,

these data allow a partial reconstruction of the biology of

basal birds.

The Jehol Biota has also produced basal members of

derived maniraptoran clades considered to be close rela-

tives of birds such as the oviraptorosaur Caudipteryx, the

dromaeosaurid Microraptor, and the troodontid Mei (Ji

et al. 1998; Xu and Norell 2004; Xu et al. 2003). Most

phylogenetic analyses consider Deinonychosauria, the

clade formed by Troodontidae and Dromaeosauridae, to

form the sister taxon to Aves; together with the Scansori-

opterygidae, these taxa form Paraves (Turner et al. 2012;

Xu et al. 2010a). The sister group to Paraves, Ovirap-

torosauria, has been considered in the past by some to be

more closely related to Aves, and several authors have

considered this group to be flightless birds (Elzanowski

1999; Lü et al. 2002; Maryanska et al. 2002). The enig-

matic Middle to Late Jurassic Scansoriopterygidae has

been resolved as a basal avian clade (Zhang et al. 2008b),

the sister group to Aves (together forming Avialae) (Xu

et al. 2010a), and a primitive lineage of oviraptorosaurs

(O’Connor and Sullivan 2014). Although there is no

agreement on the phylogenetic position of this taxon,

which is obfuscated by the poor preservation of the entirely

juvenile and subadult described material (O’Connor and

Sullivan 2014), hypotheses all place this taxon in a fairly

derived position in the maniraptoran tree. Only one pos-

sible scansoriopterygid has been named from the Jehol

Biota, Zhongornis haoae, which was originally described

as a basal bird (Gao et al. 2008; O’Connor and Sullivan

2014). Representatives of these clades from the Jehol Biota

also preserve rare indicators of biology such as feathers,

stomach contents, soft tissues, and behaviour, helping to

narrow the phylogenetic bracket for the origin of many

derived avian biological features by elucidating the con-

dition in the closest relatives to birds.

Aves is the clade formed by common ancestor of Ar-

chaeopteryx and Neornithes (crown group birds). Some

researchers prefer to use Avialae (=Aves) and Aves

(=Neornithes) (Gauthier, 1986); however, we find this

phylocode terminology does not clarify phylogenetic issues

as was originally proposed (Nixon et al. 2003), and, since

basal forms like Confuciusornis and Enantiornithes are still

clearly birds (L. Aves; causing particular confusion in

Latin languages), we find the classical terminology used

here preferable. Currently, Aves is without a character-

based definition; the last notable attempt—more than half a

century ago—employed three skeletal features (the pres-

ence of a furcula, retroverted pubes, and a reversed hallux)

and the presence of feathers (de Beer 1954). However,

these features no longer define Aves, being either present in

non-avian dinosaurs (furcula, feathers) or absent in basal-

most birds (retroverted pubis, reversed hallux) (Mayr et al.

2005; Witmer 2002). Living birds are highly modified

compared to other amniotes with numerous biological

features that make them unique among extant animals (Gill

2007). Therefore, it may be possible to use some of these

differences in order to define Aves. The Jehol Biota pro-

vides data regarding the biology of dinosaurs across the

avian transition, revealing when some derived ‘avian’ traits

arose in the maniraptoran lineage. First, the relevant bio-

logical information from derived maniraptorans is sum-

marized. Then, recent breakthroughs in our understanding

of the biology of basal birds are reviewed in three regards:

development of the sternum; the alimentary tract; and re-

production. We synthesize this information in order to

elucidate the plesiomorphic avian condition and put for-

ward the first attempt at a potential biological definition for

Aves.

Institutional abbreviations: IVPP, Institute of Vertebrate

Paleontology and Paleoanthropology, Beijing, China;

STM, Shandong Tianyu Museum of Nature, Pingyi, China.

Biology of derived Jehol maniraptorans

Oviraptorosaurs from the Jehol Biota reveal that, at this

point in evolution, theropods experienced ontogenetic

changes in their plumage, similar to living birds (Xu et al.

2010b). Gizzard stones are preserved in several specimens

of Caudipteryx indicating that oviraptorosaurs had a two-

part stomach and a ventriculus specialized for grinding (Ji

et al. 1998; Zhou et al. 2000). Deinonychosaurs from the

Jehol Biota do not preserve gastroliths, although several

specimens of Microraptor preserve stomach contents in-

cluding the remains of an enantiornithine bird, mammals,

and fish; such a varied diet suggests this taxon was an
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opportunistic predator (O’Connor et al. 2011b; Xing et al.

2013). Two specimens of the Jehol troodontid Mei long are

preserved in an avian style sleeping posture (Gao et al.

2012; Xu and Norell 2004) and, like Archaeopteryx,

members of this clade do not have a sternum (Zheng et al.

2014b). Based on the largest published dataset of any

single dinosaur taxon (Anchiornis, n = 229), troodontids

are also considered to lack a cartilaginous sternum

(O’Connor et al. 2014b; Zheng et al. 2014b). Although

most dromaeosaurids appear to have paired medially un-

fused sternal plates (e.g., Sinornithosaurus) (Norell and

Makovicky 2004), the median suture is fully closed in adult

specimens of Microraptor gui forming a true sternum (Xu

et al. 2003). Although Jehol oviraptorosaurs have medially

unfused sternal plates without a well-developed medial

articulation (e.g., Caudipteryx) (Zhou and Wang 2000), a

medially fused sternum is also present in at least one Late

Cretaceous oviraptorid (Ajancingenia) (Osmólska et al.

2004).

Basal bird biology

Sternal development: Enantiornithes

Enantiornithines are inferred to have a developmental

strategy that is super precocial based on the discoveries of

well ossified hatchlings and late stage embryos with rec-

trices that suggest enantiornithines were volant immedi-

ately or soon after hatching (Chinsamy and Elzanowski

2001; Zhou and Zhang 2004); the only super-precocial

living birds are the primarily ground-dwelling megapodes,

whereas enantiornithines were considered volant arboreal

birds. Locomotor activity is known to slow growth and

flight is the most physically demanding form of locomotion

(Gill 2007; Starck and Ricklefs 1998), thus slow growth

would be predicted in the Enantiornithes. This is confirmed

through osteohistological analysis and further supported by

the numerous young juvenile specimens that have been

collected in the Jehol Group, which together hint at a very

protracted juvenile period of ontogeny (Chiappe et al.

2007; Chinsamy et al. 1995; O’Connor et al. 2014a). These

juveniles preserve the ossification sequences of compound

elements such as the carpometacarpus, tarsometatarsus and

sternum (Chiappe et al. 2007). In particular, the sternum

reveals a pattern unique among archosaurs, consisting

primarily of a caudal median ossification centre with ad-

ditional contribution from a proximal median centre and a

bilateral pair that forms the lateral trabeculae (Zheng et al.

2012). This pattern is very different from the typical ar-

chosaur condition in which the sternum forms from a bi-

lateral pair of elements that medially fuse in the adult

phenotype of some derived maniraptorans (oviraptorosaur

Ajancingenia, dromaeosaurid Microraptor) and basal birds

(Confuciusornis, Jeholornis) (Zheng et al. 2012) (Fig. 1).

The sternum is one of the last elements to ossify (Starck

1993) and a midline suture persists until late in ontogeny in

basal birds (Confuciusornis, Jeholornis) and the extant

flightless ratites (Von Blötzheim 1958; Zheng et al. 2012).

The median pattern of ossification observed in enantior-

nithines may have served to reinforce the sternal midline at

an earlier ontogenetic stage, helping to resist compression

forces induced by volant activity in young juveniles during

their protracted ontogeny.

Alimentary tract

A large number of specimens preserving ingested items

allow for a partial reconstruction of the alimentary tract.

These specimens further represent a good portion of the

known phylogeny, thus revealing evolutionary trends

(Fig. 2). The holotype specimen of Jeholornis prima pre-

serves a large number of seeds in the stomach, which lead

authors to infer the presence of a large crop (Zhou and

Zhang 2002). Several specimens of Sapeornis preserve

seeds in a ventrally located crop as well as gizzard stones in

the ventriculus (Zheng et al. 2011). This is consistent with

observations from living herbivorous birds in which the

crop forms a distinct ventrally located pouch located just

proximocranial to the thoracic girdle (Gill 2007). The Jehol

ornithuromorphs preserve the greatest wealth of direct

evidence: numerous specimens of Yanornis have been

collected with fish bones in the crop and ventriculus and

one specimen preserves sand impacted in the intestines

(Zheng et al. 2014a); Piscivoravis has macerated fish bones

in the ventriculus (Zhou et al. 2013a); several specimens of

Archaeorhynchus preserve a large cluster of small gizzard

stones (Zhou et al. 2013b; Zhou and Zhang 2006a); several

specimens of Iteravis have a small number of large gizzard

stones (Zhou et al. 2014); and Hongshanornis preserves a

seed-filled crop and gizzard stones in the ventriculus

(Zheng et al. 2011). These specimens together indicate the

presence of an essentially modern alimentary tract with a

specialized crop diversified into several morphologies and

a two-part stomach with the ventriculus adapted for

grinding (Zheng et al. 2014a). Differences in crop and

gizzard stone morphology indicate ornithuromorphs had

specialized their digestive tract to handle a diversity of

diets. Furthermore, specimens of Yanornis preserve both

whole fish and macerated fish bones in the crop indicating

that peristalsis—the complex system of muscle contrac-

tions responsible for bidirectional movement between the

oesophagus and stomachs—was already in place (Zheng

et al. 2014a). This increases the flexibility of the avian

digestive system, allowing birds to regurgitate hard-to-

J Ornithol (2015) 156 (Suppl 1):S333–S342 S335

123



digest items (in the form of pellets), and further increasing

the efficiency of the system by decreasing weight and

overall gut residency times.

Confuciusornithiformes and Enantiornithes are com-

pletely lacking in regards to direct evidence of their diet.

One specimen of Confuciusornis preserves a small cluster

of fish bones near the neck that have been interpreted as a

pellet (Dalsätt et al. 2006); however, the singularity of this

evidence in light of the over 1000 known specimens sug-

gest that this interpretation may be incorrect. One enan-

tiornithine specimen preserves a few small stones in the

abdomen, interpreted as rangle—stones ingested by

predatory birds to help clean their alimentary tract (Li et al.

2014); again, support for this interpretation is lacking and

the only clues of diet in Jehol enantiornithines are dental

and rostral morphology (O’Connor and Chiappe 2011).

Tooth morphology in particular is diverse and suggests a

range of food items; however, the absence of evidence for a

crop or two-part stomach is perplexing given that these

features are clearly present in Sapeornis and ornithuro-

morphs and enantiornithines fall within this phylogenetic

bracket. This may suggest major trophic partitioning be-

tween Jehol clades. Notably, despite their modern

alimentary tract ornithuromorphs retain teeth—in fact,

Yanornis martini has the most hypertrophied dentition of

any bird in the Jehol fauna. However, birds with a ven-

triculus adapted for grinding and an herbivorous diet do

show trends in tooth reduction (e.g., Sapeornis, Hong-

shanornis, Archaeorhynchus, Iteravis) (Zheng et al. 2011;

Zhou et al. 2014).

Reproductive system

Several Jehol birds preserve what appears to be the soft

tissue impression of mature ovarian follicles (O’Connor

et al. 2013a; Zheng et al. 2013). Although a controversial

interpretation, no feasible alternative or well-supported

counter-argument has been proposed (Mayr and Manegold

2013; O’Connor et al. 2013b). A total of seven specimens

have been described preserving follicles: one Jeholornis

and six enantiornithines. These specimens are all primarily

in dorsal or ventral view and preserve the cluster of folli-

cles entirely on the left side of the body, consistent with

living birds in which the right ovary has been lost (Zheng

et al. 2013). Follicles are proportionately larger in enan-

tiornithines compared to Jeholornis, which in turn has a

greater number of follicles (Fig. 3). The enantiornithine

Fig. 1 Simplified cladogram of

derived maniraptoran

relationships depicting relative

sternal ossification patterns,

which indicate there are no

shared sternal features at the

base of the avian clade. Dashed

line indicates where sternal

plates are absent. Light grey

indicates Late Cretaceous;

darker grey indicates Tertiary.

[Color for online/pdf only]
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specimens further encapsulate a diversity of taxa and

similar to living birds reveal a spectrum of follicle to body

size ratios which are inversely related to the number of

preserved follicles, also consistent with the evolution of

increasing k-selected reproductive strategies across

Theropoda and paralleling evolution in Neornithes

(O’Connor et al. 2013a; Zheng et al. 2013).

Discussion

The exceptional preservation of the Jehol Biota provides a

taphonomic window into the biology of the second oldest

avifauna (Zhou et al. 2003). Living birds are highly mod-

ified compared to other groups of amniotes and this is

commonly attributed to the evolution of flight, the most

physically demanding form of locomotion, dictating that

birds must be light weight and highly efficient (Gill 2007).

This has resulted in numerous modifications not just to the

skeleton but also to the biology of birds, producing

modifications in the breathing and feeding mechanisms,

reproductive system, growth strategy, and others. Croco-

dylia represent the only other living clade of archosaurs

and, together with Neornithes, provide a phylogenetic

bracket for studying the biology of extinct dinosaurs.

Numerous avian features are known to have evolved

outside of Aves (e.g. asymmetrical pennaceous feathers,

brooding, asymmetrical eggs) (Grellet-Tinner and Chiappe

2004; Xu et al. 2003), but others are apparently absent in

basal birds (e.g. keeled sternum, rapid growth) (O’Connor

et al. 2014a; Zheng et al. 2014b). Below, we discuss

derived maniraptoran biology in three aspects (sternal de-

velopment, digestion, and reproduction) in the context of

the crocodilian and neornithine condition, and make in-

ferences regarding the evolution of these features in early

birds in order to identify features that may potentially de-

fine the avian clade.

Sternum

The crocodilian sternum consists of two medially articulating

cartilaginous plates, whereas the neornithine sternum is one of

the most complex elements in the avian skeleton, as well as

one of the largest and most characteristic with its deep ventral

keel and numerous caudal trabeculae. However, a sternum

was absent in the basal birds Archaeopteryx and Sapeornis,

and thus the origin of the avian sternum is unclear and the

plesiomorphic condition is unknown (Zheng et al. 2014b). In

basal birds, the sternum, where present, is formed by two

medially articulating plates as in closely related non-avian

dinosaurs (e.g. dromaeosaurids, oviraptorids), that fuse late in

Fig. 2 Relationships between

specimens preserving evidence

of the morphology of the

alimentary canal: Caudipteryx

(Oviraptorosauria) IVPP

V12430 preserves gizzard

stones; Jeholornis (Aves) IVPP

V13352 preserves seeds

indicative of a crop; Sapeornis

(Pygostylia) STM15-15

preserves both seeds in the crop

and gizzard stones; Yanornis

(Ornithuromorpha) STM9-15

preserves fish in the crop and

ventriculus. The crop is either a

synapomorphy of Aves or

Jeholornis ? all more derived

birds. Dashed line indicates no

data. [Color for online/pdf only]
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ontogeny (Jeholornis, Confuciusornis); late stage fusion is

also documented in some non-avian theropods (e.g. Ajancin-

genia, Microraptor) (Osmólska et al. 2004; Xu et al. 2003).

This pattern is also present in extant flightless paleognaths, the

ratites (Von Blötzheim 1958). Jehol enantiornithines, how-

ever, reveal a pattern previously undocumented among ar-

chosaurs. Instead of being formed by medially articulating

plates, the sternum is formed primarily by proximodistally

arranged median ossification centers (Zheng et al. 2012).

Therefore, despite the importance of the boney sternum in

living birds, this skeletal feature fails to provide any synapo-

morphies or autapomorphies for Aves as a whole (Fig. 1).

Digestion

Compared to neornithines, the crocodilian oesophagus is

unmodified and only a single stomach, the ventriculus, is

present; Neornithines have an expanded oesophageal pouch

called the crop and a two-part stomach—the proventriculus

and ventriculus (Gill 2007). Although gastroliths have been

found in the stomachs of crocodilians, these are not true

gizzard stones and the ventriculus is unmodified for

grinding (Wings 2007). A two-part stomach apparently

evolved outside Aves, as evidenced by the presence of

gizzard stones in basal oviraptorosaurs (Ji et al. 1998).

However, the crop is so far only known in Aves. Given the

phylogenetic bracket for this feature, considered present in

the basal Jeholornis (Zhou and Zhang 2002), we suggest

the presence of a crop may be an autapomorphy of Aves

(Fig. 2). Unfortunately, the presence of a crop cannot be

determined in Archaeopteryx. Although morphologically

simple in many living birds, the crop is capable of ex-

panding enormously to carry large prey items or great

quantities of food. This is considered to have evolved in

order to allow birds to swallow prey items whole in the

absence of teeth and thus the ability to orally process food

(Gill 2007); alternatively, it is attributed to the need to

gather large amounts of food quickly, to minimize time

spent exposed to danger while foraging in the open (Zheng

Fig. 3 A simplified cladogram

of archosaur relationships

showing data regarding

reproductive system. A single

ovary is regarded as an

autapomorphy of Aves. Bold

dashed lines indicate indirect

evidence from preserved eggs

that suggest two functional

ovaries and oviducts; normal

dashed lines indicate absence of

evidence. Crocodylia is

represented by Alligator

mississippiensis—note that

mature follicles are nearly equal

in size (one of two ovaries;

image provided by L. Guillette

and reproduced with

permission); Jeholornis is

represented by STM2-51;

Enantiornithes is represented by

an indeterminate specimen

STM10-12; Neornithes is

represented by Gallus—note the

strong degree of follicular

hierarchy in the maturing

follicles (image provided by A.

Johnson and reproduced with

permission) [Color for online/

pdf only]
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et al. 2011). However, a crop is clearly present in many

toothed Early Cretaceous birds invalidating the first hy-

pothesis (Zheng et al. 2014a); one specimen of Yanornis

preserves two whole fish in the crop indicating that, despite

its hypertrophied dentition, it did not orally process food.

Although the second hypothesis cannot be tested, an al-

ternative is presented here: the crop evolved due to the

decrease in body size that occurred at the dinosaur–avian

transition (Turner et al. 2007). As body size decreased, so

did the size of the abdominal cavity; this was also coupled

with an increase in rigidity of the ventral body wall due to

the increase in size of the pectoral muscles (and sternum

where present). Furthermore, the physical demands of

flight suggest an increase in oxygenic and caloric demands

(Gill 2007). Increased demands for oxygen presumably

increased the size of the respiratory system, further limiting

the space in the abdominal cavity (although the respiratory

system also invaded the skeleton, saving space and de-

creasing bone weight). Because of the limited storage ca-

pabilities of the two specialized stomachs, in order to

satisfy the increased metabolic demands of flight, food now

had to be stored outside the abdominal cavity, necessitating

the evolution of the crop. The oesophagus is not ventrally

bounded by bone and is free to expand to many times its

normal size, thus allowing birds to gather large amounts of

food despite their small size and crowded abdominal

cavity.

The feeding mechanism is the combination of the

feeding apparatus, the jaws and associated musculature,

and the alimentary tract (Gill 2007). Although basal or-

nithuromorphs have essentially a modern alimentary canal,

a primitive feeding apparatus obviously persisted—teeth

are present in the Late Cretaceous ornithurine birds,

Ichthyornis and Hesperornis (Marsh 1880). The loss of

teeth is commonly attributed to the evolution of flight in

order to reduce overall weight as well as the weight of the

skull, thus affecting the centre of gravity (Gill 2007).

However, given that teeth persist for over 85 My of avian

evolution, flight was clearly not a limiting factor. However,

where a grinding gizzard is present, dentition is reduced

(Zheng et al. 2011). This supports hypotheses that these

two features—teeth and a grinding ventriculus—are re-

dundant (Louchart and Viriot 2011). This indicates that

evolutionary trends in tooth morphology are diet-related;

the diversity of tooth morphologies in Jehol ornithuro-

morphs, including edentulous forms, represent diet specific

specialization rather than broad evolutionary trends. There

is comparatively little tooth reduction in Early Cretaceous

enantiornithines (O’Connor and Chiappe 2011), consistent

with the complete absence of evidence for a grinding giz-

zard. Confuciusornithiforms represent more of a puzzle—

this edentulous clade, the oldest beaked birds (Hou et al.

1995), preserve no direct evidence of a grinding gizzard or

an herbivorous diet. Given the large number of specimens,

this is considered a true absence. Notably, they also have a

complete postorbital bar indicating that the massive skull

was rigid, and akinetic (Chiappe et al. 1999; Zhang et al.

2008a).

Reproduction

The reproductive strategies of the two clades of living ar-

chosaurs are highly disparate. Crocodilians have large

clutches of small, symmetrical eggs with a single crystal-

lographic layer; they bury their eggs during incubation and

have minimalistic roles as parents (Huchzermeyer 2003).

Like all other amniotes, crocodilians have two functional

ovaries and oviducts. Living birds are unique in that they

typically only have a single functional ovary and oviduct—

the left. The loss of the right ovary is commonly attributed

to flight (Gill 2007). Because of their higher basal

metabolic rate, neornithines undergo rapid vitellogensis;

because the process of yolk deposition begins in the first

follicle that will ovulate, living birds show a high degree of

follicular hierarchy, whereas crocodilians, with their low

basal metabolic rate, have extended periods of vitelloge-

nesis producing a very low follicular hierarchy (Huchzer-

meyer 2003) (Fig. 3).

Some aspects of maniraptoran reproduction have a long

history of study through the discoveries of fossilized eggs

and nests. These specimens reveal that asymmetrical eggs

with three crystallographic layers evolved outside Aves

among derived non-avian maniraptorans (Buffetaut et al.

2005; Grellet-Tinner and Chiappe 2004). An exceptional

specimen of oviraptorid from the Late Cretaceous of

Mongolia was discovered preserving two eggs between the

pubes, interpreted as evidence that two functional oviducts

and ovaries were still present in this clade (Sato et al.

2005). The paired structure of eggs in the nests of Late

Cretaceous troodontids suggests two functional ovaries and

oviducts were also present in this clade (Varricchio et al.

1997). Soft tissue aspects of the reproductive system have

for obvious reasons otherwise remained elusive until the

recent discovery of mature ovarian follicles preserved in

several Jehol birds. The presence of two ovaries in the

derived maniraptoran clade Oviraptorosauria (Sato et al.

2005) and potentially Troodontidae as well (Varricchio

et al. 1997), and only a single ovary in the basal long

boney-tailed bird Jeholornis, only more derived than Ar-

chaeopteryx, indicates the loss of the right ovary occurred

very close to the dinosaur-avian transition (Zheng et al.

2013). This is consistent with the hypothesis that the right

ovary was lost due to the physical constraints of flight.

Notably, the holotype of Compsognathus longipes also

apparently preserves ovarian follicles (Griffiths 1993,
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1999); however this specimen is preserved in lateral view

and the presence of a single versus paired ovaries cannot be

determined (O’Connor et al. 2013a). Two would be ex-

pected given the phylogenetic position of this taxon outside

Maniraptora (Turner et al. 2012). With the loss of the right

ovary known to have occurred very near the advent of

Aves, we propose that the presence of a single ovary may

define the avian clade (Fig. 3). However, unlike living

birds, Early Cretaceous taxa show a minimal follicular

hierarchy similar to crocodilians and consistent with the

lower metabolic rate inferred through osteohistology

(Chinsamy et al. 1995; O’Connor et al. 2014a; Zheng et al.

2013). Given that the derived growth strategy present in

most neornithines evolved within Ornithuromorpha

(Chinsamy et al. 1995), we suspect that follicular hierarchy

comparable to living birds may also be restricted to derived

members of this clade.

Conclusions

We have explored three different aspects of basal bird bi-

ology: the reproductive system, alimentary canal, and one

element of the skeletal system—the sternum. As with

previous studies that have attempted to use integumentary

or skeletal features to define Aves, the sternum provides no

features unique to Aves as a whole, and this element may

even have been plesiomorphically absent. However, when

we broaden our scope beyond the primarily skeletal per-

spective and consider what it means to be biologically

avian, we identify two potential autapomorphies for the

clade. Although with no data from Archaeopteryx or the

immediate sister-taxon to Aves (as yet unknown), we

cannot confirm with absolute certainty whether these traits

are truly limited to birds. Given that the phylogenetic po-

sition of Archaeopteryx is somewhat controversial, the

former issue may prove irrelevant. Increased clarity re-

garding the phylogenetic relationships of derived mani-

raptorans and new discoveries will surely elucidate these

issues. Given that the rate of discovery in the Middle–Late

Jurassic and Early Cretaceous deposits in China shows

little sign of waning, and recognizing that conclusions

based on the current data are highly susceptible to

modification with new data, we consider this first biologi-

cal definition for Aves an initiation point from which to

expand, as does our understanding.
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