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To date, the only Neandertal genome that has been sequenced to high quality is from an
individual found in Southern Siberia.We sequenced the genome of a female Neandertal from
~50,000 years ago from Vindija Cave, Croatia, to ~30-fold genomic coverage. She carried
1.6 differences per 10,000 base pairs between the two copies of her genome, fewer than
present-day humans, suggesting that Neandertal populations were of small size. Our analyses
indicate that she was more closely related to the Neandertals that mixed with the ancestors
of present-day humans living outside of sub-Saharan Africa than the previously sequenced
Neandertal from Siberia, allowing 10 to 20%more Neandertal DNA to be identified in
present-day humans, including variants involved in low-density lipoprotein cholesterol
concentrations, schizophrenia, and other diseases.

N
eandertals are the closest evolutionary
relatives identified to date of all present-day
humans and therefore provide a unique
perspective on human biology and his-
tory. In particular, comparisons of genome

sequences from Neandertals with those of present-
day humans have allowed genetic features spe-
cific to modern humans to be identified (1, 2)
and have shown that Neandertals mixed with
the ancestors of present-day people living outside
sub-Saharan Africa (3). Many of the DNA sequences
acquired by non-Africans from Neandertals were
likely detrimental and were purged from the hu-
man genome via negative selection (4–8), but
some appear to have been beneficial and were
positively selected (9); among people today, al-
leles derived from Neandertals are associated

with both susceptibility and resistance to dis-
eases (7, 10–12).
However, our knowledge about the genetic

variation among Neandertals is still limited. To
date, genome-wide DNA sequences of five Nean-
dertals have been determined. One of these,
the “Altai Neandertal,” found in Denisova Cave
in the Altai Mountains in southern Siberia, the
eastern-most known reach of the Neandertal
range, yielded a high-quality genome sequence
(~50-fold genomic coverage) (2). In addition, a
composite genome sequence from three Nean-
dertal individuals has been generated fromVindija

Cave in Croatia in southern Europe but is of low
quality (~1.2-fold total coverage) (3), while aNean-
dertal genome from Mezmaiskaya Cave in the
Caucasus (2) is of even lower quality (~0.5-fold
coverage). In addition, chromosome 21 (13) and
exome sequences (14) have been generated
from a different individual from Vindija Cave
and one from Sidron Cave in Spain. The lack of
high-quality Neandertal genome sequences, es-
pecially from the center of their geographical
range and from the time close to when they were
estimated to have mixed with modern humans,
limits our ability to reconstruct their history and
the extent of their genetic contribution to present-
day humans.
Neandertals lived in Vindija Cave in Croatia

until relatively late in their history (3, 15 ). The
cave has yielded Neandertal and animal bones,
many of them too fragmentary to determine
from their morphology from what species they
derive. Notably, DNA preservation in Vindija
Cave is relatively good and allowed the determi-
nation of Pleistocene nuclear DNA from a cave
bear (16), a Neandertal genome (3), and exome
and chromosome 21 sequences (13, 14).
To generate DNA suitable for deep sequenc-

ing, we extracted DNA (17 ) and generated DNA
libraries (18) from 12 samples from Vindija 33.19,
one of 19 bone fragments from Vindija Cave de-
termined to be of Neandertal origin by mito-
chondrial (mt) DNA analyses (19). In addition,
567 mg were removed for radiocarbon dating
and yielded a date of greater than 45,500 years
before present (OxA 32,278). One of the DNA
extracts, generated from 41 mg of bone mate-
rial, contained more hominin DNA than the
other extracts. We created additional libraries
from this extract, but to maximize the number
of molecules retrieved from the specimen, we
omitted the uracil-DNA-glycosylase (UDG) treat-
ment (20, 21). A total of 24 billion DNA frag-
ments were sequenced, and ~10% of these could
be mapped to the human genome. Their average
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Fig. 1. Heterozygosity and inbreeding in the Vindija Neandertal. (A) Distribution of heterozygosity
over all autosomes in the three archaic hominins, 12 non-Africans, and 3 Africans. Each dot represents
the heterozygosity measured for one autosome.The center bar indicates the mean heterozygosity across
the autosomal genome(s). (B) Genome covered by shorter (2.5 to 10 cM, red) and longer (>10 cM, yellow)
runs of homozygosity in the three archaic hominins.
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length was 53 base pairs (bp), and they yielded
30-fold coverage of the ~1.8 billion bases of the
genome to which such short fragments can be
confidently mapped.
We estimated present-day human DNA con-

tamination among theDNA fragments (20). First,
using positions in the mtDNA where present-day
humans differ from Neandertals, we estimated
anmtDNA contamination rate of 1.4 to 1.7%. Sim-
ilarly, using positions in the autosomal genome
where all present-day humans carry derived var-
iants whereas all archaic genomes studied to date
carry ancestral variants, we estimated a nuclear
contamination rate of 0.17 to 0.48%. Because the
coverage of the X chromosome is similar to that
of the autosomes, we inferred that the Vindija
33.19 individual is a female, allowing us to use
DNA fragments that map to the Y chromosome
to estimate amale DNA contamination of 0.74%
(between 0.70 and 0.78% for each of the nine
sequencing libraries). Finally, using a likelihood
method (2, 3), we estimated the autosomal con-
tamination of 0.18 to 0.23%. We conclude that
the nuclear DNA contamination rate among the
DNA fragments sequenced is less than 1%. After
genotyping, this will result in contamination that
is much lower than 1%.
Because ~76% of the DNA fragments were

not UDG-treated, they carry C to T substitutions
throughout their lengths. This causes standard
genotyping software to generate false hetero-
zygous calls. To overcome this, we implemented
snpAD, a genotyping software that incorporates
a position-dependent error profile to estimate
the most likely genotype for each position in the
genome. This results in genotypes of quality com-
parable to that ofUDG-treated ancientDNAgiven
our genomic coverage (20). The high coverage
of the Vindija genome also allowed for charac-
terization of longer structural variants and seg-
mental duplications (20).
To gauge whether the Vindija 33.19 bone might

stem from a previously sequenced individual
from Vindija Cave, we compared heterozy-
gous sites in the Vindija 33.19 genome to DNA
fragments sequenced from the other bones. The
three bones from which a low-coverage com-
posite genome has been generated (Vindija
33.16, 33.25, and 33.26) do not share variants
with Vindija 33.19 at a level compatible with
their being derived from the same individual.
By contrast, more than 99% of heterozygous sites
in the chromosome 21 sequence from Vindija
33.15 (13) are shared with Vindija 33.19, indicat-
ing that they come from the same individual
(20). Additionally, two of the other three bones
may come from individuals that shared a ma-
ternal ancestor to Vindija 33.19 relatively re-
cently in their family history because all carry
identical mtDNAs.
In addition to the Altai Neandertal genome,

a genome from a Denisovan, an Asian relative
of Neandertals, has been sequenced to high
coverage (~30-fold) from Denisova Cave. These
two genomes are similar in that their hetero-
zygosity is about one-fifth of that of present-
day Africans and about one-third of that of

present-day Eurasians. We estimated the hetero-
zygosity of the Vindija 33.19 autosomal genome
to 1.6 × 10−5; similar to the heterozygosity of the
Altai Neandertal genome and slightly lower than
that of the Denisovan genome (1.8 × 10−5) (Fig.
1A). Thus, low heterozygosity may be a feature
typical of archaic hominins, suggesting that they
lived in small and isolated populations with an
effective population size of around 3000 individ-
uals (20). In addition to low overall heterozygosity,
the Altai Neandertal genome carried segments
of many megabases (Mb) [>10 centimorgans
(cM)] without any differences between its two
chromosomes, indicating that the parents of
that individual were related at the level of half-
sibs (2). Such segments are almost totally ab-
sent in the Vindija genome (Fig. 1B), suggesting
that the extreme inbreeding between the par-
ents of the Altai Neandertal was not ubiquitous
among Neandertals. We note, however, that the
Vindija genome carries extended homozygous
segments (>2.5 cM) comparable to what is seen
in some isolated Native American populations
today (20).
The high quality of the three archaic genome

sequences allows their approximate ages to
be estimated from the number of new nucleo-
tide substitutions that they carry relative to
present-day humans when compared to the in-
ferred ancestor shared with apes (1). Using this
approach, we estimate that the Vindija 33.19
individual lived 52 thousand years ago (ka),
the Altai Neandertal individual 122 ka, and
the Denisovan individual 72 ka (Fig. 2) (20).
Many factors make such absolute age estimates
tentative. Among these are uncertainty in gen-
eration times and mutation rates. Nevertheless,
these results indicate that the Altai Neandertal

lived about twice as far back in time as the Vindija
33.19 Neandertal, whereas the Denisovan in-
dividual lived after the Altai but before the
Vindija Neandertal.
We next estimated when ancestral popula-

tions that gave rise to the three archaic genomes
and to modern humans split from each other
based on the extent to which they share ge-
netic variants (1–3, 20). The estimated popula-
tion split time between the Vindija Neandertal
and the Denisovan is 390 to 440 ka and that
between the Vindija Neandertal and mod-
ern humans 520 to 630 ka, in agreement with
previous estimates using the Altai Neandertal
(2). The split time between the Vindija and
the Altai Neandertals is estimated to be 130 to
145 ka. To estimate the population split time
to the Mezmaiskaya 1 Neandertal previously
sequenced to 0.5-fold coverage, we prepared
and sequenced libraries yielding an additional
1.4-fold coverage. Because the present-day hu-
man DNA contamination of these libraries is
on the order of 2 to 3% (20), we estimated the
population split time to the Vindija 33.19 indi-
vidual with and without restricting the analysis
of the Mezmaiskaya 1 individual to fragments
that show evidence of deamination. The result-
ing split time estimates are 100 ka for the de-
aminated fragments and 80 ka for all fragments
(Fig. 2).
It has been suggested that Denisovans re-

ceived gene flow from a hominin lineage that
diverged prior to the common ancestor of mod-
ern humans, Neandertals, and Denisovans (2).
In addition, it has been suggested that the an-
cestors of the Altai Neandertal received gene
flow from early modern humans that may not
have affected the ancestors of European Ne-
andertals (13). In agreement with these studies,
we find that the Denisovan genome carries
fewer derived alleles that are fixed in Africans,
and thus tend to be older, than the Altai Ne-
andertal genome, whereas the Altai genome
carries more derived alleles that are of lower
frequency in Africa, and thus younger, than the
Denisovan genome (20). However, the Vindija
and Altai genomes do not differ significantly
in the sharing of derived alleles with Africans,
indicating that they may not differ with re-
spect to their putative interactions with early
modern humans (Fig. 3, A and B). Thus, in con-
trast to earlier analyses of chromosome 21 data
for the European Neandertals (13), analyses
of the full genomes suggest that the putative
early modern human gene flow into Nean-
dertals occurred before the divergence of the
populations ancestral to the Vindija and Altai
Neandertals ~130 to 145 ka (Fig. 2). Coales-
cent simulations show that a model with only
gene flow from a deeply diverged hominin into
Denisovan ancestors explains the data bet-
ter than one with only gene flow from early
modern humans into Neandertal ancestors,
but that a model involving both gene flows
explains the data even better. It is likely that
gene flow occurred between many or even most
hominin groups in the late Pleistocene and that
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Fig. 2. Approximate ages of specimens and
population split times. Age estimates for
the genomes estimated from branch shortening
(i.e., the absence of mutations in the archaic
genomes) are indicated by dotted lines. Popula-
tion split time estimates are indicated by dashed
lines. The majority of Neandertal DNA in present-
day people comes from a population that split
from the branch indicated in red. All reported ages
assume a human-chimpanzee divergence of
13 million years. Numbers show ranges over point
estimates (split times), or ranges over different
data filters (branch shortening).
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more such events will be detected as more an-
cient genomes of high quality become available.
A proportion of the genomes of all present-

day people whose roots are outside Africa de-
rives from Neandertals (2, 3, 22). We tested if
any of the three sequenced Neandertals falls
closer to the lineage that contributed DNA to
present-day non-Africans by asking if any of
them shares more alleles with present-day non-
Africans than the others (20, 23). The Vindija
33.19 and Mezmaiskaya 1 genomes share more
alleles with non-Africans than the Altai Ne-
andertal, and there is no indication that the
former two genomes differ in the extent of their
allele sharing with present-day people (Fig.
3C). Using a likelihood approach, we estimate
the proportion of Neandertal DNA in present-
day populations that is closer to the Vindija
than the Altai genomes to be 99 to 100% (20).
Thus, the majority of Neandertal DNA in
present-day populations appears to come from

Neandertal populations that diverged from
the Vindija and Mezmaiskaya 1 Neandertals
before their divergence from each other some
80 to 100 ka.
The two high-coverage Neandertal genomes

allow us to estimate the proportion of the ge-
nomes of present-day people that derive from
Neandertals with greater accuracy than was
hitherto possible. We asked how many de-
rived alleles non-Africans share with the Altai
Neandertal relative to how many derived al-
leles the Vindija Neandertal shares with the
Altai Neandertal—essentially asking how close
non-Africans are to being 100% Neandertal (24).
We find that non-African populations outside
Oceania carry between 1.8 and 2.6% Neander-
tal DNA (Fig. 4A), higher than previous esti-
mates of 1.5 to 2.1% (2). As described (25 ), East
Asians carry somewhat more Neandertal DNA
(2.3 to 2.6%) than people in Western Eurasia
(1.8 to 2.4%).

We also identified regions of Neandertal an-
cestry in present-day Europeans and Asians
using the Vindija and the Altai Neandertal ge-
nomes (8, 20). The Vindija genome allows us
to identify ~10% more Neandertal DNA se-
quences per individual than the Altai Nean-
dertal genome (e.g., 40.4 Mb versus 36.3 Mb in
Europeans) because of the closer relationship
between the Vindija genome and the introgress-
ing Neandertal populations. In Melanesians,
the increased power to distinguish between
Denisovan and Neandertal DNA sequences re-
sults in the identification of 20% more Nean-
dertal DNA (Fig. 4B).
ManyNeandertal variants associatedwith phe-

notypes and susceptibility to diseases have been
identified in present-day non-Africans (6, 7, 10–12).
That the Vindija Neandertal genome is more
closely related to the introgressing Neandertals
allows ~15% more such variants to be identified
(20). Among these are variants associated with
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contamination. Bars show two standard errors from the mean in
all plots.
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plasma concentrations of low-density lipoprotein
(LDL) cholesterol (rs10490626) and vitamin D
(rs6730714), eating disorders (rs74566133), visceral
fat accumulation (rs2059397), rheumatoid arthri-
tis (45475795), schizophrenia (rs16977195), and the
response to antipsychotic drugs (rs1459148). This
adds to mounting evidence that Neandertal an-
cestry influences disease risk in present-day hu-
mans, particularly with respect to neurological,
psychiatric, immunological, and dermatological
phenotypes (7 ).
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